一种适用于 BOC(m,n)的无模糊捕获算法

王剑*1 戚涵天² 刘瑞华³ ¹⁰(中国民航大学民航空管研究院 天津 300300) ²⁰(中国民航大学中欧航空工程师学院 天津 300300) ³³(中国民航大学电子信息与自动化学院 天津 300300)

摘 要: BOC 信号的研究主要集中在 BOC(n,n)族类,对于不限制 m 和 n 取值的无模糊捕获跟踪算法研究较少。 该文提出一种适用于 BOC(m,n)的基于相关函数的无模糊捕获算法,通过平移重构 BOC 信号自相关函数构造它的 互补函数,再与原函数叠加以消除副相关峰。该算法在消除 BOC 调制带来的副峰的同时,保留了单一的窄主峰, 保持主峰宽度不变,利用 BOC 调制方式高精度易跟踪的特点,解决了一般 BOC 信号捕获和跟踪过程中的模糊问 题。仿真验证了新算法的特性,并与其他的算法进行了比较分析。 关键词:无模糊捕获算法;二进制偏移载波;合成互补相关函数

中图分类号: V249.32 文献标识码: A

DOI: 10.11999/JEIT171089

文章编号:1009-5896(2018)08-1829-09

Unambiguous Acquisition Scheme for BOC(m,n) Signals

OI Hantian[®] WANG Jian^① LIU Ruihua³

^(I) (Civil Aviation ATM Research Institute, Civil Aviation University of China, Tianjin 300300, China)

[©](Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China)

[®] (College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China)

Abstract: An unambiguous acquisition scheme for BOC (m,n) signals is proposed by constituting a Synthesis Supplemental Correlation Function (SSCF) according to their features. By applying the proposed scheme, side peaks are well eliminated and an unambiguous correlation function with a single narrow peak is obtained. It is confirmed that the proposed scheme is capable of acquiring BOC (m,n) signals. It is especially compared with the traditional BPSK-like method and the results show that the SSCF scheme performs much better in the acquisition success rate and peak-to-average ratio despite the noise interference.

Key words: Unambiguous acquisition; Binary Offset Carrier (BOC); Synthesis Supplemental Correlation Function (SSCF)

引言 1

二进制偏移载波(Binary Offset Carrier, BOC) 是全球导航卫星系统(Global Navigation Satellite System, GNSS)的一种新型信号调制方式,在GPS, 伽利略以及中国北斗系统中已经得到应用。相较于 传统的二进制相移键控(Binary Phase Shift Keying, BPSK)调制方式,BOC 调制具有更好的相关特性,

收稿日期: 2017-11-20; 改回日期: 2018-04-08; 网络出版: *通信作者: 王剑 caucwang@263.net

有更强的抗多径性能,其裂频特性带来的频谱搬移 可以有效解决现在频带拥挤的问题^[1]。BOC 调制方 式的自相关函数的主峰相对相同码速率的 BPSK 调制方式更为狭窄陡峭,可以提高码跟踪精度。但 是, BOC 调制也使它的相关函数出现了多峰,并且 相邻副峰的幅度与主峰十分接近,这给 BOC 信号 的捕获和跟踪造成了很大的干扰,给信号的跟踪和 锁定带来偏差。目前 BOC 信号的捕获方法主要有 直接处理法^[2]、BPSK-like 方法^[3]、相关函数法等。

BOC 信号直接处理法与传统的导航信号处理 方法相似,通过接收信号与本地产生 BOC 信号进 行相关的峰值来判定是否捕获成功,优点在于硬件 构造简单,但是捕获时间较长,也不能很好处理相 关峰的多峰特性。BPSK-like 方法利用 BOC 调制 方式的一个频率边带,或者非相干合并两个单边带

基金项目: 民航安全能力建设项目(AADSA0007), 国家重点研发计 划-地球观测与导航重点专项(2016YFB0502400)

Foundation Items: The Civil Aviation Safety Capacity Building Project (AADSA0007), National Key Research and Development Program of China-Key Points for Earth Observation and Navigation (2016YFB0502400)

算法后的结果来达到类似于 BPSK 接收的相关峰的 效果,进而解决 BOC 调制方式中出现的模糊度问 题。黄彬等人^[4]提出了一种 BtoB(Back to BPSK) 算法,通过将左右边带频谱进行相位翻转处理后再 叠加的方式,对捕获性能和计算量进行了折中。 BPSK-like 算法虽然能够处理一般的 BOC 信号, 但 是并没有利用 BOC 调制的高精度的优点,并且在 处理过程中伴随着较大的能量损失。相关函数法是 指利用相关函数的几何特性来去除 BOC 调制模糊 度,同时维持 BOC 信号较窄的相关峰特性。这方 面的研究主要集中在BOC(n,n)类信号,常见的算法 有 ASPeCT^[5], ACF+AACF^[6], Filter^[7]算法等。此外, 新型算法也不断被提出,曹晓亮等人^图提出一种新型 的捕获算法降低了运算量;程亚文等人¹⁹对 Filter 算法进行了改进,保留原算法提高主峰峰值优点的 同时进一步消除了副峰,提高了捕获性能; 王奕新 等人^[10]提出了基于 FPGA 的 BOC 信号捕获算法, 解决同样问题;陈翔等人[11]提出了一种新型精确同 步方法,完全消除副峰的同时保持了优良的抗多径 性能而检测概率只是略有下降。但是这些算法都只 适用于BOC(n,n)族系列信号捕获,对其他族类的信 号不适用。孙刚等人^[12]在 ASPeCT 算法的基础上, 将提出了适用于 BOC(2n,n) 信号的捕获方法; 徐利 国等人^[13]则提出了 CCFR 算法同样解决了 BOC(2n,n)信号的捕获模糊问题; Yao 等人^[14]提出 了 GRASS 算法,能够解决一般的 BOC(kn,n) 信号 的无模糊捕获问题。以上的算法都只能处理特定的 信号族类,对于一般的 BOC 信号缺乏实用性。张 天骐等人[15]提出了一种通用无模糊捕获算法能够解 决一般的信号捕获问题,但是该算法需要对副载波 进行大量的分解重构,硬件实现较为复杂。

GPS, Galileo 以及中国北斗虽然都有采用 BOC 调制方式,但不仅仅局限于BOC(n,n)调制方式。在 同一个 GNSS 系统中,如中国北斗系统,对于不同 类型的信号也应用不同的m, n取值,如 B1a data 和 B1a pilot 信号采用 BOC(14,2)调制, B1C data

采用 BOC(1,1)调制而 B1C pilot 信号采用 QMBOC(6,1,4/33)调制(相互正交的 BOC(1,1)子载 波和BOC(6,1)子载波组合构成,二者功率比为29:4), B3a data和B3a pilot信号采用BOC(15,2.5)调制 等。本文提出了一种适用于 BOC(m,n) 信号的无模 糊捕获算法,并将其命名为合成互补相关函数法 (Synthesis Supplemental Correlation Function, SSCF)。经仿真发现,该算法可以有效减弱多峰特 性,对于m,n的取值没有限制,并且结构简单,易 于实现。

2 BOC 调制信号及捕获算法

2.1 BOC 调制信号的自相关函数

BOC 调制本质上就是在原有调制的基础上,添 加一个方波副载波对原有的信号进行二次调制。经 过 BOC 调制以后,信号的频谱会产生分裂,其能 量峰在功率谱密度曲线上会向左右两边平移一定间 隔,成为双边对称的形式。

副载波频率f.和码率f.是描述 BOC 调制的两 个重要参数,表示为 BOC(f_{s}, f_{t})。在实际使用中, f_a 和 f_a 通常都是基准频率 $f_a = 1.023$ MHz 的整数倍, 因此常用 BOC(m,n) 来表示 BOC 调制。其中 m 表示 副载波频率为 $f_s = mf_0, n$ 表示码率为 $f_c = nf_0$ 。BOC 信号的频谱和自相关特性与这两个参数密切相关, 他们决定了 BOC 信号的频率搬移量和自相关函数 的副相关峰个数。调节这两个基本参数,可以选择 性地避开拥挤频带,将信号能量转移到指定可用部 分,以达到避开其他信号干扰的目的,实现频带共 用,缓解频带日益拥挤的问题[1]。

设二进制序列为[c₁, c₂, …, c_n], BOC 基带信号序 列可以表示为

$$S(t) = \sum_{i} (-1)^{c_i} P \ t - iT_c$$
(1)

(2)

式中, $c_i \in \{0,1\}$, T_c 为码元宽度, P(t)为二次调制 后的码信号。

设调制阶数 N = 2m / n,则 BOC(m,n) 的自相 关函数可以表示为[14]

$$R_{\rm BOC}(\tau) = \begin{cases} (-1)^{k+1} \left(\frac{\tau (2N-2k-1)}{T_{\rm c}} - \frac{2(N-1)k - 2k^2 + N}{N} \right), & \frac{kT_{\rm c}}{N} \le \tau \le \frac{(k+1)T_{\rm c}}{N} \\ (-1)^{k+1} \left(\frac{\tau (2k-1)}{T_{\rm c}} - \frac{(N-k)(2k-1) - k}{N} \right), & \frac{(k-N)T_{\rm c}}{N} \le \tau \le \frac{(k-1)k}{N} \\ 0, & |\tau| \ge T_{\rm c} \end{cases}$$

 $k = 0, 1, 2, \dots, N - 1, N$ 越大, $R_{BOC}(\tau)$ 的形式越复杂。

图1是经过BPSK 调制的信号的自相关函数与 BOC(1,1)调制信号的自相关函数,由图1可知,经 过 BPSK 调制的信号有良好的自相关特性,而经过

 $\leq \tau \leq \frac{(k-N+1)T_{\rm c}}{N}$ BOC(1,1)调制的信号却有两个明显的副峰,对于卫

星信号的捕获而言, 副峰的出现会对最终的判决带 来模糊干扰。而且,随着m,n取值的改变,相应 BOC 信号的副峰数量也随之改变(图 2)。可以看出

图 1 BPSK(1), BOC(1,1)自相关函数

两边第1副峰的幅度与主峰非常接近,这会使信号 误捕的概率大大增加。

2.2 BOC 信号捕获算法

本文在研究 BOC 信号时,为了消除副相关峰, 在相关函数领域,对比分析了 ASPeCT, ACF+ AACF 以及 BPSK-like 等算法的特点。

(1)ASPeCT 算法原理: BOC 信号的自相关函数及 BOC/PRN 信号的互相关函数在相同的码相位处有相似的副峰,对这两种相关函数取模后进行相减,可有效消除 BOC 调制信号自相关函数的副峰。如图3所示。

ASPeCT 算法的数学表达式:

$$R_{\rm AS}(\tau) = R_{\rm BOC}^2(\tau) - \alpha R_{\rm BP}^2(\tau)$$
(3)

式中, R_{AS} 表示经过 ASPeCT 算法之后得到的相关 函数, R_{BOC} 表示的是本地 BOC 信号自相关函数, R_{BP} 表示接收 BOC 信号与本地伪码的互相关函数, α 表示加权系数。

(2)ACF+AACF 算法原理: BOC(1,1)的自相关

图 2 BPSK(1), BOC(5,1)自相关函数

函数(Auto-Correlation Function, ACF)和自相关绝 对值函数(Absolute Auto-Correlation Function, AACF)主峰大小相等,方向相同;副峰大小相等, 方向相反。这样,两者之和正好可以完全消除副峰 且保留其较窄的主峰。如图4所示。

其数学表达式:

$$R_{\rm AA}(\tau) = R_{\rm ACF}(\tau) + R_{\rm AACF}(\tau)^2 \tag{4}$$

其中, $R_{AACF}(\tau) = |R_{ACF}(\tau)|$ 。

从图 3, 图 4 可以看出, 两种算法在处理 BOC(*n*, *n*)族信号时有比较好的效果,几乎能够完全消除 BOC 信号自相关函数的副峰。但是在处理非 BOC(*n*,*n*)族类的信号时并不适用。图 5 和图 6 是 经过两种算法处理后的相关函数,可以看出,仍然 存在明显的副峰干扰。

(3)BPSK-like 算法原理: BOC 调制信号可看作 是两个频带宽度和能量相同的 BPSK 信号的合成, 通过滤波器进行处理后,可看作两个独立的 BPSK 信号。现在的 BPSK-like 捕获技术有 Martin&

□ 1.0 -1.0 -2.0 −1.0 0 1.0 2.0 円偏移(chip)

(b) ACF+AACF算法合成结果

图 6 ACF+AACF 算法前后 BOC(14,2)相关函数

Heiries 和 Fishman&Betz 两种。Martin&Heiries 法 是用主瓣滤波器将接收信号的主瓣滤出,通过上下 频移 f_s将信号的主瓣移动到零中频,然后再与本地 伪码进行相关运算;Fishman&Betz 法则是选择滤 波器来滤出上下边带,同时本地伪码经过主瓣滤波 器滤出其主瓣,分别与上下边带的主瓣进行相关运 算。以 Martin&Heiries 法为例,经过处理得到的相 关函数如图 7 和图 8 所示。

BPSK-like 算法最终将 BOC 信号的自相关函数 拟合成了接近于原始 BPSK 的形式,构造成出了良 好的单峰,它的优点在于能够解决一般的多峰捕获 问题,能够适用于任意的*m*,*n*取值。但是 BPSK-like 退回了 BPSK 的模式,浪费了 BOC 信号高精度的 优势,并且由于使用了多组复数滤波器,上下边带 分开处理增加了相关器的硬件消耗,而且滤波过程 中也伴随着信号能量的损失。

3 合成互补相关函数法

研究 BOC 信号可以发现以下几个特性:

(1)副峰数量与参数 m, n 有关, 边峰的能量峰值 随着边峰与主峰之间间隔的增加而逐渐减小, 第 i 对 边锋的能量峰值可以表示为 $(1-i/(2m/n))^2$, i = 1, 2,…, $2m/n - 1^{[16]}$;

(2)每个副峰的码片长度接近,且与参数*m*,*n*有关;

(3)BPSK 信号的自相关函数近似于 BOC(m, n)信号的包络。

根据特性(1)和特性(2), BOC 信号的自相关函数拥有周期性,所以信号本身的自相关函数可以用于构造互补相关函数。而特性(3)表明了 BPSK 信号的自相关函数包络可以作为 BOC 副峰幅度的参考。 BPSK 信号的自相关函数具有良好的线性特征,因此,可以将原自相关函数平移一定长度并且以 BPSK 自相关函数曲线为参照包络调节其幅度得到 与原自相函数互补的相关函数。最后将互补相关函数与原 BOC 自相关函数叠加,得到无模糊的最终 相关函数。

根据上述分析,本文提出一种新算法 — 合成 互补相关函数法(SSCF),其数学表达式为

图 7 BPSK-like 算法前后 BOC(1,1)相关函数

式中, R_{SSCF} 表示经过新算法处理之后得到的相关函数, R_{BOC} 表示的是本地 BOC 信号自相关函数, $N_{pk} = 4m/n - 1$, 表示总峰数(主峰+副峰), T_c 表示码元宽度。记 $M = 2T_c/N_{pk}$, 则M表示 BOC 信号各个峰的平均宽度。

新算法捕获原理框图如图9所示。

具体处理步骤如下:

步骤 1 接收 BOC 信号,确定信号调制参数(m, n 取值);

步骤 2 生成本地 BOC 信号,获得 BOC 自相 关函数;

步骤 3 分别截取 BOC 自相关函数包含主峰 宽度的双边函数(即分别截取左、右两边的单边函数 加上另一边 *M*/2长度的部分),并分别向左、右平 移 *M*长度(长度与*m*,*n*取值有关);

步骤 4 根据 BPSK 调制的包络对平移后的函数进行幅度调节,得到与原函数近似互补的新函数,最后与原自相关函数叠加,取模平方,得到最终结果(图 10);

步骤 5 计算步骤 4 处理后的结果,进行捕获 门限检测,若步骤 4 的最大值小于门限值,返回步 骤 2,否则判定捕获成功,转跟踪模块。 图 10 为新算法应用于 BOC(1,1)的结果。为验 证新算法对任意 *m*,*n* 都适用,分别对 BOC(15,10), BOC(14,2), BOC(15,3)信号应用新算法,结果如图 11 所示。

可以看到,新算法能够获得良好的窄带单峰, 重构之后相关函数的主峰宽度 $\leq 2T_c/(2N-1)$,其 中, $T_c = 1/f_c$,表示伪码码元宽度,N = 2m/n, 表示调制阶数。新算法和上述几种算法适用性和性 能对比见表 1。

从表 1 中可以看出,ASPeCT 算法和 ACF+ AACF 算法均只适用于 BOC(*n*,*n*)族信号,原始的 BPSK 调制方式的主峰宽度为2*T*_c,而适用于任意族 类信号的多锋捕获算法 BPSK-like 其主峰宽度也同

表1 各算法性能对比

捕获算法	适用信号	复杂度	主峰宽度
BPSK 捕获	BPSK	低	$2T_{\rm c}$
ASPeCT	BOC(n,n)	低	$2T_{ m c}/3$
ACF+AACF	BOC(n,n)	低	$2T_{ m c}/3$
BPSK-like	BOC(m,n)	高	$2T_{ m c}$
新算法	BOC(m,n)	较低	$2T_{\rm c}/(2N-1)$

图 10 新算法运用前后 BOC(1,1)相关函数

图 11 新算法运用前后相关函数对比

样为2T_c,精度损失较大。新算法消除了信号族类限制的同时,完整保留了BOC 调制信号高精度的优点。而且调制阶数N越高,主峰宽度越小,曲线也更加平滑,相关特性越好,捕获和跟踪精度也越高。该算法在重构相关函数时可以根据m,n取值进行调整并且保持性能,不会出现传统滤波因为载波频移带来的滤波性能下降的问题。

4 捕获结果及性能分析

4.1 捕获结果

为了验证捕获算法的正确性,本文对新算法的 捕获过程进行仿真验证。仿真中采用北斗系统现在 正在使用的 BOC(14,2)调制的信号,设定伪码长度 为 1023,则 BOC 信号码长度为 1023×2×14/2= 14322。设置载波频率为 95.48 MHz,采样频率 2×38.192=76.384 MHz,加入噪声,产生随机的多 普勒干扰和码相位偏移。多普勒频移搜索范围为140 kHz(±70 kHz),搜索步长为500 Hz,捕获阈值(主 峰/第1副峰)为2.5,载噪比设定为43 dBHz。仿真 结果如图 12 所示。此次仿真的多普勒频率为-17.97 kHz,码相位偏移为 818×2×14/2=11452。

结果表明,新算法能够成功捕获到 BOC 信号, 并且多普勒频移和码相位偏移都和输入的参数相 符。

4.2 捕获性能分析

实际 BOC 信号在传输处理过程当中不可避免 会混入一定功率的噪声,而本文算法对信号自相关 函数的截取、幅度调节等操作时连同噪声部分一同 进行处理,将互补相关函数与原自相关函数叠加时 放大了噪声,可能会导致信号捕获失败,捕获性能 降低。

为了定量研究噪声功率对新算法捕获成功率的 影响,本文将新算法的抗噪性能与其他算法进行了 比较。

图 13 是各算法对 BOC(1,1)信号的捕获率图示 (相干积分时间为1 ms)。

仿真结果表明,新算法和传统算法,包括直接 捕获,ASPeCT,ACF+AACF和 BPSK-like 算法

图 12 捕获结果图

等,针对 BOC(1,1)信号进行捕获时,在载噪比达到 36~37 dBHz 以上时基本能够达到100%的捕获成功 率。但是载噪比只有 35 dBHz 时,新算法和仅仅只 有 63%的捕获成功率, 勉强和 ACF+AACF 持平。 载噪比在 30~35 dBHz 之间时,新算法的捕获成功 率低于其他算法,相同捕获率下新算法对载噪比的 要求提高了约1~2 dBHz。

新算法的一大优势就是能够处理所有 m, n 取 值的 BOC 信号,因此针对这一问题,本文还挑选 了北斗正在使用的 BOC(14,2)信号, 对该信号的抗 噪性能进行了对比分析,结果如图 14 所示(相干积 分时间为1 ms)。直接捕获, ASPeCT 以及 ACF+ AACF 等方法只适用于 BOC(n, n)信号捕获,因此 图 14 中只显示了 BPSK-like 算法与新算法的捕获图 像。

从仿真结果可以看出,针对 BOC(14,2)信号, 新算法在载噪比达到 43 dBHz 以上时,基本可以达 到接近 100%的捕获成功率。而在此条件下, BPSK-like 算法的捕获成功率仅仅不到 70%。

结合图 13 和图 14, 可以看出 BOC 信号调制阶 数的增加会导致信号捕获成功率的降低。要维持高 阶信号的捕获率,需要保证接收信号具有更高的载 噪比。新算法虽然受到了噪声的干扰,抗噪性能受 到一定程度的削弱,但是对于 BOC(n,n)信号,依 然可以在 36~37 dBHz 达到 100%的捕获率,而对 于高阶 BOC 信号,新算法的捕获率明显优于 BPSK-like 算法。由此可以看出,针对不同族类的 BOC 信号,新算法能够较好地维持捕获性能。

4.3 鉴相器输出

鉴相器用于鉴别接收到信号与本地复制信号的 相位差。相关器间隔的设置和自相关函数的主峰宽 度有关,常规捕获算法的相关器间隔为0.5个码片, 对应于捕获算法的码元宽度判定依据。此时跟踪环

可以看到处理前的 BOC 信号的鉴相曲线十分 复杂,前后一个码片的范围内有多个零点,每个零 点前后领域的相关曲线形状都很接近于中心零点, 此时很容易将信号的相位锁定在两侧的非中心零点 上,造成信号误锁,跟踪失败。而经过 SSCF 处理 的鉴相曲线有且仅有两个较窄的峰,消除了跟踪模 糊问题。图 15(c)中, SSCF(14,2)信号的主峰宽度远 小于 BPSK 信号,两峰之间还存在着一段零幅曲线, 意味着 SSCF 的相关器间隔还可以进一步缩小提高 跟踪精度。

图16是将相关器间隔设置为BOC(14,2)信号主 峰宽度(2/(2×14-1)=2/27个码片),此时 BPSK 信 号的鉴相曲线已经接近于 0, 信号已经无法跟踪锁 定。SSCF 算法处理后的鉴相曲线依然表现良好, 中心零点两端有明显的较大的相关幅值,此时跟踪 误差为 2/27 个码片。可以看出,新算法在跟踪精度 上明显优于其他算法。

5 结论

本文针对 BOC 几种相关函数类的捕获算法进 行了研究,吸收结合了 ASPeCT 算法, ACF+AACF 算法和 BPSK-like 算法的思想,提出了一种适用于 BOC(m, n)信号的捕获算法,通过对 BOC 信号自 相关函数的平移重构互补,消除了副峰的干扰,并

图 14 BOC(14,2)信号捕获率

图 16 BPSK, BOC 和 SSCF 的鉴相曲线(相关器间隔为 2/27 个码片)

且打破了一般相关函数算法对于 BOC 族类的限制。 通过对新算法的仿真研究,验证了算法捕获的有效 性,对新算法带来的抗噪声能力也进行了定量的比 较分析。

参 考 文 献

- BETZ J W. Binary offset carrier modulation for radionavigation[J]. Navigation - Journal of The Institute of Navigation, 2001, 48(4): 227–246. doi: 10.1002/j.2161-4296. 2001.tb00247.x.
- [2] LI Ping, GAO Fei, LI Qian, et al. An improved unambiguous acquisition scheme for BOC(n,n) signals[C]. IEEE International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, 2015: 1–6. doi: 10.1109/WCSP.2015.7341026.
- BURIAN A, LOHAN E S, RENFORS M, et al. BPSK-like methods for hybrid-search acquisition of galileo signals[C].
 IEEE International Conference on Communications, Istanbul, Turkey, 2006: 5211–5216. doi: 10.1109/ICC.2006.255493.
- [4] 黄彬, 汪文雯, 张纪超, 等. 一种新的 BOC 信号捕获算法[J].
 科学技术与工程, 2015, 15(8): 199-203. doi: 10.3969/j.issn.

1671-1815.2015.08.038.

HUANG Bing, WANG Wenwen, ZHANG Jichao, et al. A new BOC signal acquisition technique[J]. Science Technology and Engineering, 2015, 15(8): 199–203. doi: 10.3969/j.issn.1671-1815.2015.08.038.

- [5] JULIEN O, MACABIAU C, CANNON M E, et al. ASPeCT: Unambiguous sine-BOC(n,n) acquisition/tracking technique for navigation applications[J]. *IEEE Transactions on Aerospace and Electronic Systems*, 2007, 43(1): 150–162. doi: 10.1109/TAES.2007.357123.
- [6] 周艳玲,胡修林,唐祖平,等.一种用于BOC(1,1)信号的无模 糊跟踪方法[C].中国卫星导航学术年会,北京,中国,2010: 331-335.

ZHOU Yanling, HU Xiulin, TANG Zuping, et al. An unambiguous tracking technique for BOC(1,1) signal[C].
China Satellite Navigation Conference, Beijing, China, 2010: 331–335.

 [7] NUNES F D, SOUSA F M G, LEITAO J M N, et al. Gating functions for multipath mitigation in GNSS BOC signals [J].
 IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 951–964. doi: 10.1109/TAES.2007.4383585.

1837

[8] 曹晓亮, 郭承军, 张鑫鑫, 等. 基于合成相关函数的 BOC(n,n)
 型信号捕获算法[J]. 电光与控制, 2017, 24(3): 51-54. doi:
 10.3969/j.issn.1671-637x.2017.03.012.
 CAO Xiaoliang, GUO Chengjun, ZHANG Xinxin, et al.

Synthesized correlation function based acquisition technique for BOC(n,n) signal[J]. *Electronics Optics & Control*, 2017, 24(3): 51–54. doi: 10.3969/j.issn.1671-637x.2017.03.012.

- [9] 程亚文,郭承军,吴衡,等. BOC 信号无模糊度捕获算法研究
 [C]. 中国卫星导航学术年会,上海,中国,2017:27-31.
 CHEN Yawen, GUO Chengjun, WU Heng, et al. Research on unambiguous acquisition algorithm of BOC signal[C]. China Satellite Navigation Conference, Shanghai, China, 2017: 27-31.
- [10] 王奕新, 左启耀, 李峰, 等. 基于 FPGA 的 BOC(1,1)信号捕 获技术[J]. 导航定位与授时, 2017, 4(2): 64-71. doi: 10.19306/ j.cnki.2095-8110.2017.02.012.
 WANG Yixin, ZUO Qiyao, LI Feng, et al. Acquisition technique of BOC(1, 1) signal based on FPGA[J]. Navigation

Positioning and Timing, 2017, 4(2): 64-71. doi: 10.19306/ j.cnki.2095-8110.2017.02.012.
[11] 陈翔,齐家敏,陈佳品,等. 一种 BOC(n,n)信号的新型精确

同步方法[J]. 科学技术与工程, 2012, 12(6): 1268-1271. doi: 10.3969/j.issn.1671-1815.2012.06.011 CHEN Xiang, QI Jiamin, CHEN Jiaping, et al. An novel unambiguous synchronization scheme for BOC(n,n) signals [J]. Science Technology and Engineering, 2012, 12(6): 1268-1271. doi: 10.3969/j.issn.1671-1815.2012.06.011.

[12] 孙刚,邓中亮,杨磊,等.基于重构相关函数的 BOC(2n,n) ASPeCT 捕获方法[C].中国卫星导航学术年会,上海,中国, 2011: 929.

SUN Gang, DENG Zhongliang, YANG Lei, *et al.* The ASPeCT acquisition method based on the reconstruction of correlation function for BOC(2n, n) signal[C]. China Satellite

Navigation Conference, Shanghai, China, 2011: 929.

[13] 徐利国, 王永明. CCFR 算法在 BOC(2n,n)信号应用中的研究
[J]. 全球定位系统, 2017, 42(3): 27-31. doi: 10.13442/j.gnss.
1008-9268.2017.03.006.

XU Liguo and WANG Yongming. Research on BOC(2n,n) signal applying CCFR algorithm[J]. *GNSS World of China*, 2017, 42(3): 27–31. doi: 10.13442/j.gnss.1008-9268.2017.03. 006.

- [14] YAO Zheng, LU Minguan, FENG Zhengming, et al. Unambiguous sine-phased binary offset carrier modulated signal acquisition technique[J]. *IEEE Transactions on Wireless Communications*, 2010, 9(2): 577–580. doi: 10.1109/ TWC.2010.02.091066.
- [15] 张天骐, 江晓磊, 赵军桃, 等. 二进制偏移载波及其衍生信号的通用无模糊捕获算法[J]. 电子与信息学报, 2017, 39(2): 451-458. doi: 10.11999/JEIT160351.
 ZHANG Tianqi, JIANG Xiaolei, ZHAO Juntao, et al. Unambiguous general acquisition for binary offset carrier and its derivative signals[J]. Journal of Electronics & Information Technology, 2017, 39(2): 451-458. doi: 10.11999/JEIT160351.
 [16] 沈峰, 徐广辉, 冯海玉, 等. 基于合成相关函数的 sin-BOC/
- [10] 元年, 示, 声, 声, 至, 至, 百茂相天函数时, sn-BOC/ MBOC 无模糊捕获方法[J]. 系统工程与电子技术, 2015, 39(9): 1980–1986. doi: 10.3969/j.issn.1001-506X.2015.09.05.
 SHENG Feng, XU Guanghui, FENG Haiyu, et al. Synthesized correlation function based unambiguous acquisition technique for sin-BOC/MBOC modulated signals
 [J]. Systems Engineering and Electronics, 2015, 39(9): 1980–1986. doi: 10.3969/j.issn.1001-506X.2015.09.05.

王 剑: 男,1961年生,教授,研究方向为通信与信息系统.
戚涵天: 男,1992年生,硕士生,研究方向为电子与通信工程.
刘瑞华: 男,1965年生,教授,研究方向为卫星导航.