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Abstract: Let G be a k-chromatic graph. G is called a Kempe graph if all k-colorings of G are Kempe
equivalent. It is an unsolved and hard problem to characterize the properties of Kempe graphs with chromatic
number >3 . The Kempe equivalence of maximal planar graphs is addressed in this paper. Our contributions are
as follows: (1) Observe and study a class of subgraphs, called 2-chromatic ears, which play a critical role in
guaranteeing the Kempe equivalence between two 4-colorings; (2) Introduce and explore the properties of
o -characteristic graphs, which clearly characterize the relations of all 4-colorings of a graph; (3) Divide the Kempe
equivalent classes of non-Kempe 4-chromatic maximal planar graphs into three classes, tree-type, cycle-type, and
circular-cycle-type, and point out that all these three classes can exist simultaneously in the set of 4-colorings of one
maximal planar graph; (4) Study the characteristics of Kempe maximal planar graphs, introduce a recursive
domino method to construct such graphs, and propose two conjectures.

Key words: Kempe maximal planar graph, Kempe transformation, o -operation, Kempe equivalent class,

o -characteristic graph, 2-chromatic ear

Vol.38No.7
Jul. 2016

1 35|15
T FiRE N, PR S — 2R

Wk 139 2016-05-115 5[ 1347 2016-05-30; %% Hifi: 2016-06-02
MEEEE: e jxu@pku.edu.cn

FEETH: FEFR 973 iHRITH (2013CB329600), [F 5 HAREI#IE 4
(61372191, 61472012, 61472433, 61572046, 61502012, 61572492,
61572153, 61402437)

Foundation Items: The National 973 Program of China (2013CB
329600), The National Natural Science Foundation of China
(61372191, 61472012, 61472433, 61572046, 61502012, 61572492,
61572153, 61402437)

WEZWER, BT, FAM 4-0gEA, ME—
A- (TIPS AR, 9- (A, B 3- 10l R AR AV AE
BB, Y AN EA A B A T Y
RIFI SR BER U, i P B8 T B4 B T W AT
2P, 5 BB E PR U

R T P i P b SRR SR, B
REAS LA 0 =i, e R =K.
HI T2 4 00 A- S R BE 700 Bn] o A1 I
B, DIk, 100 24K, R B RIRE 5T
ST RZ A, ATESEE 4-C05L M9RpEIT T



1558 BT 516G 8 %R

% 38 %

By, Mg, AEtgetE, nrmbtk, AERusEAE
WY, I HAEGF R R, S 7@ g —
A-FAR R T B AR A S 9-C RS ARAE:, e AT T i
) 1 T AR R 1T P 6 38 A% O 9T H R o

FEARORAY- Th B 0 Lk i S g 4 7 1k, — IR
WM TAE 2 Kempe &5 Kempe 5412,
Kempe T et —ME KT, BHEA 2-AFH
T B FEANEM 7y 3 BRI S E e, HAR TR
AR — PR AR 5. AR e X o 185
IR AE O NS —IREZ IR Kempe AL (1)
BHEGELE 3N .o-sHE2—MEEIEE: NG+
M— BT H G5 —A 450,

— N kG2 -G TR E-EE S R
J) Kempe ZEME), M f ik, A TR
Kempe B 3R/1G /o B, XE&—FEMIER,
MR R R 0N G I A TRy B G I3
T f ) Kempe MY, iEYS f O Kempe
MR R B B R, — A 4RO E G
) Kempe RAFHIE, WHRGTEENAD 45
& Kempe 54111

Kempe 84T 1879 4F Kempe ) TAEF, H
Kempe ZJ&, 156X Kempe S5 2Rub T RGHEH
32 Fisk, flifE 1977 4F3CHR[6] T UEW] T 25—
V-1 L A T st B AR, JLPET AT 4-5 (k)
—A Kempe 254028 1978 4F, Meyniel iER] T :
fE—FIE A 5-F O —1 Kempe %5
2Kl 1981 4F, Vergnas 55 Meyniel UEH] T ANHTIL
42 K, WA — R R KT 5-A 2 —1 Kempe
SEM R, 2007 4, Mohar WFH T : FEANMAEUNT &
W, AT k-4 A0 Kempe S0P, JE42
H TR SIS AL:

BrE1 Xk >3, A A k- E T
k-t 52 Kempe 254 191,

2015 4, Feghali %5 A\ MOHIE B T 4548 1 £F k=3 i,
i K, B = AREAE, SR E TR 3-%46 /2 Kempe
N BATEW T Mk =40, F 18 Y 4
k>5 I, SRR

2008 4, Cereceda 25 A\M%F G k-t K&
P (G)#AT THEF, H, B(G)MTNAERNGH
T k- ORI S, B k-G CAHIEL Y HAL
MEAHE G A — AN S AN R B, HUEH T
B GO E € {23}, B, (G) ANIEW; k>4,
P, (G) nIRE%E, WnlReAdim.

KT T RE (A, — 28223850 135 (4 ) Kempe

dL1u Xiaoqing, XU Jin, submitted to Discrete Mathematics.

A4 5 Kempe S KRBT THFFE, W Mcdonald %%
A2, Sarah 268 A\ M2,

R Kempe 224t 5 Kempe SR K HLE
Z= 5 (PRI E T 23 WL SCHR [14-24]

KR ARSI TR A (s R
g, BARGAMNMROEE. Mo -iai, H—
Bt 715, WA RIAS XTI MiE—
AMRRPIE G T, o -isH— AR 45
SHITA 4450, SRR 456, Hr-1sB5 e
Cy(G) TH—A 4 H/ O FHITAM 450, S
4-F .

AT E B B R R B . T4 E
EG, 3HHV(G), EG), dg(v) Rl Ng(v) KER
G TR, %, TisT o 1 BEECRITI A v 4D
I (B ST o AHAR IR T AT O AR B AR ), W4
BNV, E ,dv),Nv) . FGHMZV(G)Ht
RNV (G). £V’ CV, E'CE, HE Pk
ARIPA S AE V!, WRRIE H = (V! E) 12K
GH—NFEATEH S, RN T Vu,0 e V(H),
u,v 78 G HAHAR Y HACH SRR H R AHAR,  FK
HHNGHW—A V' SHFE, dhGV']. XT
RAZHIANE G, H, FH¥E G RS
K H P RS TH AR, WA 3 s RO & @
5K HBE, CAGVH . K, £xn-Brese
K. “FILE K, 5o Bl C, K C, v K, FrIER B
W, , HhC, Moz Bl MK, TR 1%
BHRL. 45K, ={z}, AMNCREW, 1B C, W
H C7 ks,

KGH—ATRRER fEfax & G T
AR, BWHhER. RGP R&AT
PIAN I R FCAS R R, IR f o G IEER B &
TR, A SO S BT AU (58 I T AT
HE. G ANEEL-TMRER®, WA L-TA
BB L-BE, ZIRNEGHTNAE Y BIZHE 5%
C (k)= {12, k} W £, W RHE R 2y €
E(G), H f(z) = f(y) o WHRAEG TAEAE—DIEF k-
WRE s, WK G ZE-TTEER. B GHa,
WAE X (G), T2 B G A & -T0fin] 35 4 1) e
Ak i x(G)=k, WG ZEE-t0E. KG K&
AN kTR O f RN T TSR VO AR 4y
{V17V2a""vk} ’ Hjiﬂf’Ff = (VDVQ”VA) ’ V;j\jééﬂ,
PRI I BNBUE, ¢ (T T R ) B, B

k

V@)=V Vi= o ViNV,=¢,i=j,i,j =12k
i=1

v, (i =12, k) & G RIS K G HPITAE A
I kA T A H ¢ (@) e HCL(G)



573

Yook AP E RS 55 A ES (4) 1559

FRoR G T H kAN AR R 4, TRFR N
KGImk-aERnE,

WG R k- EENE, fREEH—NE-F&
t, {12k} NEIE. HGLRRESFT, G
Fr A A5 Bt i 5 e ¢ (R TR B T 4R 5 Y
WK, Fmzh 2-aSHFE, L, it=
L2k, i=t o IEABURERHOT, Ha, KIUF
Gl G, Ay SCBRR A it -9 32

W — A B e ) 70 A A I A AE T
RAHAZ, IRRXAS B FEEE . -~ X Rl i
o —/ N FmEEN, ASCHTEFIT R E Y f
HTE W — AR AT E o TP,
G S L EATART P AN ASFH AR 0 T00 2 TR P — 4k e,
LV TR — B EIR , AR T T A AR K T B
A P R 1 (LS TGS 1 &Rt 3 4kt
A, MFZFHE A= /A0 B. SiE, WP
THT PR = #1351 43 PR A SN 1 o

O/ 1 R E R RS, Y 1
T SRR iRT JEECh 3 TS FR N TREE; WA
Boh 2 MTARRNRE. & RS S E
A, Wi By RFE. Hird el A
RANLFEE(2),

IR »

K1 R

B G RE—AMBNE > 4 1 A-GOCFRE, L
RGN, 52X
Fe={rreci@liwl=4 @

F G =¢, W LT G KT 4-8iR,
L (G) 7R G BT AT A€ S H e 2 B

ASCRBI o SEHINE R, ROV o S5,
AT AR AR O
RO 2- BEM AR EAE, T, 765 2 fiw
- H B TIRABIIT: 5 3 WHIANT o RHEA,
WA T T o B OO (G) T AF
2R 3 A WA T o SR,
150 (G) Th A2 (2 AR o B 1S
i BRI TWOCER 3T o B Kempe %
WA 4 B R, PR, ARERRA Kempe
KIR; 25 5 5% Kempe BIRFIEREAT THEST, 49,
FHT 2 4MKT Kempe EFISEAH.

SRR LS AR DG E L il S ER 2 L OCER
25-27].

2 2-88H

AR -G THIA 502K, {ERERL b
gt - H e LSS A . 2- (A H R LA T
o 18 HRIE o
2.1 2-BEHEXENX

WG RN 4R, HZEGH—T
B, f2Gm—"4-F0 BAH fF(H)RRHLEf
HETWEEd. TG hiEEECc, Chal
FH VI VS 7R C IR A BB T A, A0 8 T s 440 ok 14 T
Je

BCIEG MR, 2GR 4-F 0,
() =2, WFKC R [ 2B, W& 2-e
B C,C LImREaroy B, e mphEiarry
EEE. X FI—A -t c, #C EAFEEMATI
R, v, CNFEC EAMLE, (BLE G FAHAE il ww
1EC W, WIFRIL w Ry 2-talE C 5%, HFRC A
2-BZE: 4, v A AR TS > 3 s P
PP A HAE C (R, PRI Ak
e, WIFR PR C 5L, HFRC A 2-BI%EEE;
WIS —AN 248 C TN FBANE 54 S %, RO h 2-
BEKE. K 2a), E2b)FnIEC 5N 2-t
SRS 2-tanzis e, I 2(a) P IIZ R vy, B
2(b)H HZEE K vivyuyvos s B 2(a) 5B 2(b)H I FE
C, 50, By 2t AN

BT 4 F 0 f, G 2-tal8 ¢ KRR G iF
AR K. W 2(a) FFRIGE, 4
IRNFAL R 2(c) I, 2-ta8 O 42 2-fasZig b, H
0,22y, s vs s AL 1T C, Cy 852 2- (A B
AR, ASSCETH T E 1 2- (R B 4R 2- (0
K. T fec)(G), MC*(f)Fomn fHEE 2-&
B HES. #3f cC)(G), 137 (C) =2, N
FRCZGH—Am 2-&lE. CHHC(G)ERRGH
SR 2-BEMBES. BA,

@)= U ¢ (2)

feci(@)

WG RE—AN(G) > 41 4, 2
GM—A 450, O, Cy 2 f TIIWA 2-Rkl,
RO 5 Gl

(W]f(C)NF(Cy) =15

(VI NV(Cy)=¢ BV NV (Cy)=¢, MFK
AR B, RO, C, FHER.

WO (G)={C,,Cop, 0}, m>2 0 MFHLHA
Al 2-tafE C,,C, € C*(G), HAFAET 2-14FE 7 4



1560

LI I IS S i

% 38 %

(b) 2-f0i% ik 14

Vs Y1

(c) 2- oI A

K2 % ik P L R

Oy, Cyyo Oy KX 40 £, f,oo f, TR C 5
Coy (1<i<t—1)% MR 2-alE, WkkC 5
C, XM, &N, e 50, FHHEX.

& 3 FiRiE s, C,, Cy, Cy, Cy 42 C*(G) K] 4
AN 2-taf, f, G IIPIANEL, O, C,), Cytt [,
1 2-tE, C,,C, 2 L1 2-ta. kit o5
C, AR

B 3 P 2GR O, C, HISKEHH L

2.2 2-BERHEXEX S5MHR

WG —N 4B PE, fec)(G), Ce
C*(f), & f(0)={1,2}, =, ystC LI—XF TR
A WHE AT AL 2 BT A y 2 (R — 45 T 8 > 3
HARBE 1 550 2 F ) 2-ta il P (z,y) BN IE C
H—A 2-BE, SN o —NE%, it 5
y WRKAER. H Ed(C) FoR C LAk 2
WS - Ed(C) PINEAEAT 73 A —EB o W
MHZE, OAURE; 75—l o 4MOELE, Rl
SNE.

Rk, B f(0) = {1,2} . 1Fi 1 5H
3 MR E RN 13-B, KLUt s 14-H, 23-
B 24-F., HAHCHZEPAEHAR M EORR A Bib
. MR, HiLEEANGIE 3, B NP 4;

WO 4HOFI—A 2-tfE, Pz,y) 5
P (' y") /28 C P L H 5%, 450 o, o JE A I,
WFR P (z,y) 5 P(zy) ARIRE: fiz=21",y=1y,
AR P (z,y) 5 P(2,y) NRIRE . B, FIREE
TR, HFREEA—E 2 RRE,

WP (z,y) 5 P(ay) 2 2-takE O I L H2E,
P(z,y) 5 P2y AR GE, WHREITHL T4
5z —:

(1) P(z,y) 5 P(z,y) ¥ O E, 8GN, H
Wi /e P (z,y) FTAE PRI S P (2, y") BIPEFR I
FHIA .
(2) P(z,y) 5 P(zy) P —NANE, H—H
ANE, HOh AN R 1 R YR
W, P(z,y) 5 Py IAFEE,
ZAHA P, P, P, FRRREERY, WP UP,
UUP, (m>2)2&GH—%&k. ZNHZEP, B,
P, A RER, WRPUPLU--UP MBI,
1 Ed(C) T B S TE BT A nl e i Rl A4 B R 4R 51
EQ(C) . N HA IR A NERE, C T
ANEHREMERESIL N Q' (C); B /M H 4 L
MR A SNERE, C RIS H R S S50 A
Q° (O)s HEBESNE, NEIHMRERNREE
B, ARG HBMRIESGIEhQ" (C). T
=
Q(C)=Q" (C)u (C)uQ™(C) (3)
K o4 P, -k o 5 HESE:
PDPQ»PSvP4$DP5’ ;H\:EPPDPQvRivRiiEéIEJY\)EH:’ Pl
5 pEFWRE: B, P, P, INE, BY P ONANH
P, P, P, 5 P, P, P¥)%i%; P, P, e,
EE 1 WG MNENE> 41 4B
me, fecl (@), Hokfrm— 2-fE,
f(C)y=1{1,2}. N
(1) Q' (C) 5 Q° () TR L&A F o H
()% C WITH 34-7) LI B35 TS 8
EHE PR or2-talE o b AR
C'e@"(0) (4)

K4 Hoe, R [RIVEE-SE 7R



573

YRk AP

G5 HE IR (4) 1561

HAME O A B 238 0 IRl e H

IR (1)AEQ' (C)HQ (C) TAFAE— I,
B O, R EE A, )R R R e ST
AR FRIEE, 1T BAT & AN B e & A [\ 1,
Wee & f i —A 2k, X5 0 fnE— 2-(0
&, M (1) 3R ;

(2) LB, O fFIIME— -t C e
Q" (C) o XNHEZERINIK C' I T 253 4 YR H
Bt C' i E G X e E P, P,
AP, PIIEC W, B4 P, PPYITEC AN, BAMA
—ANEC W, —AECHN, TR EWFEE, 0]
et ¢ AN o 2-(kE, FE.

otk O e ™ (O)FnC —F, HA R
C' IO H2 2 R o R R R O (1 T AT 2
BhlRl e ., wWe P e P, P TR N EL P, P!
B AN, EAIAE f R IE IR 2 R,
P, P =g TEN, —NET RSN, FHHp—A
mﬁ@uﬁm%ﬁé3mm£ﬁm,W%—Azm

B 1(ek 2) 56 4 TR, LA £, P, P!
SRS A, HREVIT O 10 -1
i

WO 2 4R PFHEGHRTHENfe
Cﬂ@%%*%@%,ﬂngﬂ,ﬁCW%ﬁ

A-53 SO B Jo T A A (Al f© o A fo
Aﬁ%&%AQEH MERT C 5h, HARW 2-(
C' 7 C R A HA G AT AW NS

()4 ¢ KM a2, WP H2645 )
%%WH%%%H,MﬁMIM@%T

(2)#7C' 3 ANFEEZE, AR 1 2 an &
5(b), 5(c) s
(B C' 4 NEHZE EAEE AL

(
)
5(d), 5(e) rn;
(4)%F O S E A F B H 58, H— BT Rem4h
Pt 5(F) s
3 o-BEES5o-4HIEE

SCHER[26] S IN T WA 5 A LS,
ff, EWFERNT. &G 4R FmE,
fecd(@), {1,2,3,4) WFaLE. 3730t € {1,2,3,4},
it G, h o, WER FhEER, KRG hTEE
BRY; R, #Vite {1,234}, @#wﬁﬂ ]

(o)A <b> W@ @4 ©4F (0%

5 B F O HSHIREE, A sSiEAoR ¢

FRfONE G RIBESR, G A& G L
AIRE S, (HAERTREE G, WK G 4 dERE Ry,
GRS, HAETRE G, WG LB E
B 47 G R TR, SRS, WIFRG h
RBEEEGAN. HBEASMEAREX, MME—
4- R ISP G, "R CY (G HIREE B
Pl (5 5 A
3.1 o-iZE 5 Kempe ZEMr

W f RO G A 44510, {1,2,3,4}
HEELE, Ot f A -, Hof(0)={12},
fRTFOWo-ZE, idfEo(f,0), fECHIME C Y,
WAfRid A o (f), 2&fa: ¥ C WITHEIE 3 55t
4 [TV AU T 4, R OR AR LB TS AR Y

R REIEE . B, T FI o -5 £ AR
G A EE T, ke, RN
o(f,.0)=f ()

HFR 5 fIETFCHENER EALER C I,
KBV TH o (f) = kTR, B, #C WA
34-5337, W o -i2H AN Kempe 284, #5C WAT S
43X Hm>2, W—Ro-BHEMLET mX
Kempe 24, #, f°5 fi& Kempe 411,

O (G) P E—E A f . K

Fh (@)

2{f; £ 15 f, & Kempe 240111, f € ) (G)} (6)

M f, ¥ Kempe ZFMr 2.

@6¢%?%1lmmk$ﬁ@ A7 8 Fh 4-
Hf ~ ﬁm4ﬁhgﬁﬂ,ﬁ%ﬂ(hq)
=k (fZ’ ) i o <f37 ) fio Fhh, G I
TAE 2-a ¢, ~ O B[ (6) =T

i o -ia 5E Ul HEAEH E B 2.

EE2 WfEGCH—D4HFDL, O’ FI—
2-tap,

a(a(£,0),C)=f (7)

c-BHMHME: BGH— 450 ik,
AW S o -85, T CY (G) HF f 1) Kempe
LMK F(Q) . WA, XFHOCFIE G, M
CY(G) AT — s-B ik, TS CY (Q) h4aE
5-4 0, Xt ey (G), WEEOREmL, ATREE 2
A Kempe S50, KGR 4 RS THEATIE
3.2 o -4HEEMENX

Xt o -85, 5N o HHEE, B ) (G) T
02 (AR FRIE 4 B

WG A 4-mRFTHE, O (G)={f,
by f} e G o -45EE, WAEGT, THREEV(GY)
={f, b f,} s V(G]) TPATURL £ 55 £ AHES Y H.



1562

% 38 4

6 o -BHRH

YU EAIE G T T4 2-tall ¢ W HANE T,
it =12 ni=t. HIENX, "G H—ik
FRER, il bpbss BY S ERANE B AN R
C o {ERFEERANARTE LT, W8S 20 B
o

Kl 6 s G 3L 8 M th, Moo -FFAEIA,
FAAN R A g 7(a), 7(b)Fias, BAR G2
—AMEEE, Hag R, MULHTAE G AR 4-
i, WAEY o -sHAR C) (G) e 450,
IEZ T IARR 48 10 B ARG, Lo -
FREAE 2 i 10 AT SR ) 10-Fr 2 1

o —————o o ——o
G L G p f f B
Gy
Y o — 9/
3 5
Cs
fr Ce e K fr % £
(a) o-4FE R (b)#hFh &t

K7 B 6 HPRE G o HHEE

3.3 o 4FEEMERMR

WG AR, W) (@) =1, W
FRG REME— 4-BIRATEE.

EE3 WG AT IE, G 2B o-
FRAERE . A
(1) G & ME— 4- M K P 1 B 24 HAL Y GY
Kl;
(2) GY HE—THH £, dgg (f) = kK IIFEP L B 5
AL P kA 2-talEl;

(3)#73f € C) (G) »
W dg, (f) =k, WA

1

EEHE (> -,

3 (G)| = k+1 (8)

XTI 11 T E RO IR,
I H 290 2% o BERATTHEIIDT S /N > 4 AR
P ELE, W O L S Bk ULEE D,
I, 455E -t I — AR ), IR AT RE
Wit o 254 0) (@) PR e A a5 k.

EE4 WG R N4-OWFHE, 3567 E
W, WK G Es 4B R H sk G
P42 |V (67 ) -1 K.

MRy E B 4 750, 45 G & 4-f4 Kempe B
ML, KGR 45 OFRE R SR G —
A A E O EIE R TR EM .

G500 (G) BIEMKE, WK G & 2R
CY(GQ) A —TRFEREE TAE o AT G S5 A4 T
5, BB NG f 1) Kempe 26028 F7 (@) SRk
It

FE 5 WG A6(G) >4/ 4R
K, feCl(G). WG] A&=HIE.

WERR B Gy E A LA AR
%

U(thl):fZ’J(flaCQ):]g’U(évc.‘s):f?) (9)
e, c, 2 f -, C), Cy 2 f12-talE, ¢, C,
e L 2-talE, Wk 8(a)fiR. WHItHEC(4) =
{1,2,3,4} . V" oo, WP ITA 5 C, LFitA
[F T A e, i =12

WR 2 R BLLs T U

R AL, O, Cy AHAS, Wi 8(b) T
Hep, o), 0, nTUUE AR, af PUAE,  HAE i
I FRAR ]

B, YueVi", A fi(u) = fu); VeV (G)
Vet A fi(v) = f(v), W 8(b)-IE 8(c)Fr7re [H]



573

VF ok BRI IS S G R (4)

1563

a9 G
OO0 99
Qar ® O B

D @

(d) A

(a) GIH—A+KH

38 G
o'!&(b 99
8)9) @D OO

D @

(c) fo

(d) f

K8 C,C, AR

B X YueVE™ s A fi(u) = fi(u) s HYo e V(G)\ V"
1 fi(0) = f(v), W S(b)FIE 8(d)Fix. HA,
VuEng“UVé", H f(u) = f(u), VUEV(G)\Vé‘:"
Vet A (o) = fv) . B, f, L TPAETERE
WV = Ve UV I -t Oy, P

BR 2 AT, #C,C, M, W fC)
= fi(Cy)» DR, W f(C)={12}, £(C,)
={1,3}, WEsmm%%omuen?nV@Q,ve
VErav(e,) s W =3, o) =25 flu)=4,
L(v)=2; f£(u)=3, fi(v)=4. B, fRAHFLE
-5 B8l Oy, {43 £, 0 £, AT Oy M HANE (4, T JE .

BT FIRPIRRE DL, A BEIRAIE .

B TR R /D BE > 4 IROCP T G 1 o -RAAIE
B G ARG =S, KR, ¥ Gf A
Lf AR, 2R N (G), WIS T
e [Nf (G)}%J@@, ISP

HiL 1 WGRDG) >4 4R
. WRHE— B3 6 £ € ) (G), G [NT(6) A
.

I 6 BWGE A ORrIE, fRG
A4t R fI—A 2-tall, Hfialt
M1 TR o (f) = fAEG] T RIEE > 2, W—
AT f e C)(GQ), 1130 A f 11 2-talE,

R |G ()| =1, ORI 2-(p, H
wF(C)={1,2}, WK 10(a)fir. BT fohEbE
AN 2-tall, O ER/AEE— X T f N
F R, WeE o 0, 2 f(oy)=f(y)=1, fiif3
FT vy, v, FIBAMEE—A 14-H, BRAAE—A 13-

A

@), &) QI
3 @)
] d ®)
0)9 (l&’@ 0)9 D

H, WK 10(a)Prm. BSLiXT C Mo -125,
REEE . fFhEROHA -l oS50, W
10(b)Fi7Re Tk, XFC" 1) 23-9) 3 5L o -18 5,
RE—ABEC F, |F(C) =3, Wk 10(c)fim.
A HARAE

EIE 7T WG AE(G) >4 4O
B, ) G AT — XA AR T FEEAN AT g A2 1 AN
2.

MERR X GY HPAELE BRI 0 o 1R 2 IR
FERTAL £, £ WIATA £ A& —A -t o), £
SN -t e e, Hf5HKT 02
AN . ANKR—MME, W £ (C)={L2}, £(C)=
{12}, £(C,) = {1,3} < K C) B L BT A I 4
G5 ) B ILAN T R B ST G R T
B o alid o G, Gyt o iy R G i -4y SCHL
,] € {1,2,3,4},@‘ = Jo

EfF, GINE—A2-talE o, NG, [
s Gy, Gy, Gy TGy A3 BEEE . BLE, GO
R, A 14-90 3288 Gyt iy, — 1 4% 14-BRIE LK
AN, GO g A 13- G iy —1
45 13-BRER N0 3o

¥ GO b 34-0r OB B A, TR AR
ho fEAH T, GO 13- 83 Ny, A, Gyt T
By — VAW S7E O B 13-, d i es 13-
G, NGO ) 1300 SO AN 4 S HL
A 13- e, Wk, ny >n,; GO R 149y 308
s A Gy A ny — 1 4P S TE C) B
14-, HTn, >n,, HBIX%, —1 4 14-BREER

9 C,,C, HAZMIE

(b) f2

(e) &

m]



1564 BT 516G 8 %R

% 38 4

10 EHE 6 iE AR

GO ) 1y A 1420 SEIERE R — AN 23 37, R
T A G AE, B Gy T 2-(ad, 7 )&, ubke

Gy ARG DU T, SR 4 T
4 3E Kempe E#) Kempe EMf 2L E

WG R AEWRFIE, ffec)(G),
WA £ 5 ¢ HAE Kempe 56016, MBI C? (f)
R 2-tE ik, WidiEsL o -128, ARkt £
HILX G LR R O () A%, mIALE R 3 Fil
Bt (1)C*(f)=0¢, W fREMEE: (2)C ()P
o 2-BARTE(HE XMEEH): (3)C* (f)hE1E
N 2-EE (Hoe M Eg ). FF0IX 3 FiEal, AH
N B AE Kempe E ) Kempe 28284930 3 25 W
L EANPEIAE AL . R, FRATXIX 3 MR
— R IHE, TP H w(G] ) %R CF (G) H Kempe
SN REIEH
4.1 Fi% Kempe Zr&

Hf RGN, W (f)=¢, B
A6 A -t I TERUEIERR, Hik, F(G)
={f}. TAHIE Kempe K G X F Kempe &4
KW N HE Kempe FNE, JHE G AR R BIR K
mE. Kk, Vv (=fec) (@), H

[¢F Q) (10)
T AP 7 21 8-

EHE 8 WG ARME— 4B

Mw(Gy)>2: #GRAMENR, Ww(G])=

(a) fis R, F12-K (b) for BAFE, r12-B

CL(G)|: # G RRBARAE, HEWECREH A
tN, Mw(G))>t+1.
4.2 BE Kempe ZEr&

WG E—A 4-EmRKFIE, fec) (@),
CeC(f). #Vf e FI(G), |1 (0)=2, W
CHfH—N2-BREE, JIRf2CH 1 2-8
FEEER, GANETCHWERELRKTEEE. hit
SEMH, AEfN, HEEXRT OMo -85, Fifiz
4-FE A oo N

C*(f)=C*(f) (11)
LAY, AFEC (/) H O () b 2- R g,
BIAE 258 C WTREALE f 145 f° R HIBE AN

R, WAL R G A 2t
BREHE S, B 11 TR R —AN R BRI
K, A7 4 a6, b L5 L XEAMY 2-(
AR, AT E M) 2- AR Dl 12-

B 12 T s T RN 24 2- (AR Rl 1
WP, A EE 1 AN ER 2 A4S 2- 0 AR Bl A7
A ASETI R B 12(a)- B 12(5) %8t T BT
4750, HAEE 12(k) 45 H T B o R B 12(1)
T SRS 2 A 2- AR AR e (AL 2 b ic) Y
U ONSQITIER

WG A AP, feC)(G), Ce
C*(f). 43 €Cl(G),

l7(C) >3 (12)
FRRE O & RT G A9 -

(c) for BIAFA

(d) fir WA

K11 REf A 2- (AR Rl BUR R i P



573

Yook AP E RS 55 A ES (4) 1565

() G, fio

K12 5 24> 2- (AR Pl 2R A R 1 i ]

EE 9 WGRN(G) >4 -t Pl
K, ¢, 572G HMmAT] 2-t s, HaZMxm, W
C, 5 C, BT .

WERR ] - M SR E X, BT o -is
Gy A E BT

SR B O A 2-(afEl, ARt o -IE AN
XA B AT o B4, AN 2- AR
Bl CH S, T o-sH2ARRNECK, MIFM.-
B, TVETEC(G) ik p, A e (12).
XU, f45 f N9E Kempe M B SEOXFIA
M IARA R 2 2- (AR TS, WEE FY(G) #R
HEZE Kempe FMHE. X THREE(>2)1 2-(04
AR ) 45 AR, EATIAE G TR T TR —
Ak -YERBSL TR TS ¢ -HERBST R, IR ¢ o
MBI A, WEB, KRN

V(BL):{(ZIJI,IQ,"',ZIJt);IZvEB:{O,l}} (13)
B' PIPIANTI AL X, 5 X, AHAR M HAY

dy (Xth) =1 (14)
Hrdy, (X,,X,) %~ X, 5 X, ] Hamming P&, R
PAAN ) R Y 7 AN TG R I EH o dtte
H e - IT R B J 2 R ¢ - IR, R
f

(B =12 (15)

EIE10 WG REA6(G) > 4 1 4- R PR
K, frRGH—METEA -, HIh 2-tA
AR Iy 445 6L W [FY(G)| =28, H.G [F! (G)| = B".

R W fRGH—MRTEA 2-(afE, HYY
h - 455, Hrb e, Gy, O R E T K
A 2R AN C, (1<i<k), #%Eiio-
BE, WH1XRR, #HEALo -85, WH o X
TNo Tt -t B P41 O, C,y, -, O T3 I
e SEiER T EAEN o -EH5KENE T 0-1 7
I A (2, 20,2 ); x; = 0,10 =1,2--- k} 7 1-1
XWRFR: X C(1<i <k){ifTo-la82 HANY
z, =1o RRHRNEC, (1< <k)EfT—K o -85
BN G R — A E A, W &N
{(z, 29,2 );2, = 0,L,i =1, 2,--- k} I —A 0-1
P8 Bk, f BT{E GY IMIEIE <2 L8/ 28 N
t;

M AR, B f BTN N BN
(1) 0-1 F# 4124 (0,0,---,0) , WIXFEREAS C, (1< i <k )il
1To-IBHGHEEINEGEN £ (1<i<k), Bf
IS e ANEANE G, REAE, BN (1<
< k) SH kAT ANt BEfTRTIE 28 N
RS 4-E ORI S kD EANE . RS
4-F5 0] B BANE Y HACS ST R K
JEN kB 0-1 P42 (8] Haming 8 2545+ 1, MM



1566

LI I IS S i

% 38 4

HEBH T3 28 AN 435t R 1) 28 A 0-1 JP F1 R g 1)
Py SRV NI

BAR, XA At R E N, IAREE o -
B S HIX AN Z AT —A 4-F5 (0. INiAE
PEIRAIE

—ANHERKINEE: T8 456 fPIEE 2-
BREREUMIBTRLHCM. TR, WATEL
b F LT FRUE B 2- (AR R T e, K AEAR RS
JEEESCEAR . EiE, SEAEN—AREALL

B2 HGCRAS(G) >4 -
K, fec? (@), CcC*(f), WC .
4.3 EINEE! Kempe ZEMZE

WG R&E—A6(G) > 41 4-t04F Kempe HAT
K, cc Cc*(@). ) ve,c, eC,c 50, M
Ki (2)|Cl> 25 (3) C &M KAHCHE 4L BRI
C*(G)\CH, NEEARf] 2-tafd cr, 5 CH
[PAT— 1] 2- A OC . T C A ] 2- (B3 FR N
&R 2-6@, F/(Q)PmECHITRNBIBESR,
Hifecl(@)Hee C, Hfffiffe5C\ 0P
FA - aBAE; CHON FI(G) NMTEER 2- B Bl&;
M FL(G) R f R, ST C -t o -
BEARMITEEOMR S, FFRZ KT CH
B 2-EEE; HAF(G) AR 2-t A% (1,
AR F7(Q) B4 ) Kempe 254728 0 B 38 B &Y
Kempe FMZE. # G SIHHAEE Kempe MK,
MFR G A TRIAE R K FEE .

13 BB NE G 5 H, FN 4- 555500 f
9o BHWAL, fEEE 2-OATEEM, XOEIEH
G, BARHe W R

(1) f ZIET O, = vyvyvyu,0, I 2- (AR (15

(2) f R TH 2- % C={C,C5,C,,
Cs,Co} MR M, Hh O, = wuwuu, , Cy =
Uy Ty Tsy Ty, Oy = Buyuguy , C5 = wuytyuy , Cg =
BTz, Ty 2 T C G B A B4R FL(G) =
{(fh b b fi} > s fi=0(f,C), f,= o(f,Cy) ,
f=0(£C) s fi=0(£:C5), f=0(f,Cs); FL(G)
1t Gy 3 7 B 13(d) .

g2 H—A 450, B 2 MEI -5
s C, ECQ » Hor C = {01a02a03a04705} , Gy =
{C,,C;,C4,Cy,Chp}, X H,
Ys5VoY2Y3Yy Uy,
Y1V2Y2Y3Y4 Vs,
Cs = tywpuguy, Oy = wuyzyuy , Gy = T3 T5u, o
FEAMGFN 210 Pl BT . 1R 918 B4 Bl 10 4 40 i) A
Ftcgl (H)=1{9,91,9293: 91} 5 F((g;) (H)=1{9:95+9> 97>
gsl» FE(H) T g,=0(9,C)), 9,=0(9,,Cy), g5=0(g,,
C3) 5 9, =0(95Cy), g=0(94,C;), F(gQ (H) o,
95 =0(9:C¢), 95 =0(95,C7)s g: = 0(96:Cs), 95 =
9(9:,Cy), 9= 0(gs,Ci); FE (H)AE H] {113 H 7K
W 13(e) i, FE, (H)AE HY 15 7 Qe 13(f)
PR o

(3) F/(G) #l—AN BB Kempe 502K, f ft
FEM) GY HEETR 2 s 13(b)FioRe. FO(H) M
MIEIAPE Y Kempe S50 25 .

11 13 BN R BUE 0 Y ((G) i —A
4-FE f, HESFHM Kempe 5026, nlgEEA
W LR .

SRR, U 1 A - AR, WA 11,
Kl 12 oA

Cy = vy, Oy =
C, =

C, = Tyl Ty Ty,

Cy = Y030, Cf = 0,0,y 50y,

Cs = wyuzuy,

2
(d) GFIFA(G))

Oy
(e) HY[F (H)]

P13 R 2 R AT FA R Y Kempe S50 2P T



G5 HE IR (4) 1567

557 VFHE BOCFTEI
BED, WS 2-(ARRE Y, XS IEH e A,
Wik 13(a);
MEIREER, WHE 1 AEZAMER -,

WK 13 () TR ) 4 g, BRI 2 MEH
He 7

1 AR (R S R 5 2- e,
{HIX 5 A FE A JE T A — Kempe S5

E2 RS H 3R Kempe 4020740, 16
*A%%MW¢V>4MWﬁ$E@G¢ (@)
AT REAELE 1~3 i Kempe 6028, HATREfE/EZ AN
[FFPRA Kempe S50 25, 4iE 20 mﬂztﬁﬁ 10
ARSI

o -BHIIENG T — Kempe S KT
T/ Kempe 502, 4 Tt i) @, FATHEH
TR IS PR e R SRR . ik,
T BN P AR KT T P DA B A B P 2R A KT~ 1
JEIFRANI T, AT Gz b e .

5 Kempe [

W — AN > 4 ) A RPN G 2
Kempe [#, WHAFHFHIE G HI—A 4456, Hn]iE
io-185, Sio) (@) PR 4G XA
S A I — POl R T 0 2R R AE, AT
P TR TV 2 KIEMEIZHE T Kempe FEiHiR
W7, IR T AN AR
5.1 Kempe EJ5%8

XT—NE/ANE> 41 A-EBHCFIE G,
A s, dE Kempe K1) Kempe S50 25H 4 1Y,
R, AR 3

B3 wG —4\%4\&%2 4 1) 4- AR If
K. U Gt Kempe B2 HACY G AR, AN 8
R, AN

AR S ME— A (RO T A AR S AH G
HrME— AR T IS AR T, RIS — 4-(4
R T P A 38 VA B AT T P 201, D g /N > 4 1)
4- VT E G 20 2 FA I 4-G (0. 45 G 2
WAL, i TREOAGRY o -I2FH R G e 4-
Ht, B G—EA L Kempe K.

RS AR S5 A 2 AHOC i 3f € CF (G

FEWE | F(C) =2 2-@%}%%10 LN 2 s, BRI
CREFHE, THE3f e (G), fif(C)=3.Hf
5 AR o 125 28, W, GTE&mm@

RIAESE AR 3 o, AREIUM Kempe BT
MR E AR E Kempe B FJRFAE jj/ﬁhk)\ﬁﬁ%‘j
Kempe EIHFIE, AT T & KigiBHEMEL.
5.2 Kempe & fI#3i&

AR L R)P M — AN/ E>410
n(>9) -tk K rFimiE e, Ak EES LS
(n—2)-Fr, 5% (n— 3)-Bise/NE > 4 IR IHE
W2, G EDIEAEE 14 I 5 DNEEAZ KB
WZ—o NHE, KRR 5 MNMERZ KIEH

TEAr mlbsic A W Wi W w2 W, W 14 Fﬁ%o

WG RN/ > 4 n(>7)-BrdEn] 75
BRI, PG I—4% 2-Kifk. 7£G EP%?
P, Sy 4RI S, AN BT 2 KA T
Wy, BubiEEWRNT W -EE], gz BidE
(G s K, SEE G PR K R 1S
FIE 14(b)-Bl 14(e) Fron A Z KR B )i 72
SRR W -EE, I wl-iEE, #rW -iEE A
FWE-EE, FiEZ BBk (@), (@),
&% (@) R (G)

ZE LT f I 2 K Y R IE ST ARG
o, AT 3 ML G e N ke B 11 f
H A ANAME f 5 R A NEE S

FE11 WG REN6(G)> 4 K 4- A
B, M (@), ™ (G) R Kempe K24 HACY G 2
Kempe ¥,

it ¥ ¢% (6) 5¢% (6)
A
B4 WG NMADNE> 41 4-(1) Kempe
BOCTTE. W™ (G) 5 ¢ (G) & Kempe BT
T 4 FLAY 4

AR SR

(@) <2 (16)

% T Kempe A% &I 5 g vk N OB SR AE

JEE s A, H R e E 11 IRELLRE, A
A MIBIE, LR G5 (Q) MR,

e

(b) We

w2 )y W2 e) W

14 5 AMEARZ AR



1568

LI I IS S i

% 38 4

6 ZHERIE

AT S, RAE Kempe P 4EHE— 2 2 B €4,
B 5 BRI P A SRS L H T SR
AT R R 2 T AR AR, (R a3
k() Kempe P78 53 06 B4 AAT AR A, 40 T
2 G PN — ek €K Kempe S5 28R ITF
O e[ Y e s S0 s e R—
B 1 B 1 Kempe 2t 2K IF T 5T

ARSI FE TR (1)KL T SBHA 4510
7 Kempe St 7EA 21, oo 2-(4 5
(CHFEAT TIRABESY: (2) BIN o HSAEE, §H
W2 T 1 G rh T A G IR R, o -
R E T I R AT T NS (3) 4Bk T AR
Kempe &) Kempe 280 48 A0, B 7R RI
AL, FEFRHIX 3 AR A] I AEAE T — AR
S 1 425 s (4) 98 T Kempe [ 4FE,
T Kempe [EH% KW E, JHokH
(G 5 ¢ (G) 2 Kempe [ 17650 U B2 4 1 2 47
B Gl 4tk F R A < 2 .

EJ5 23w ofg ot 3 249F Kempe P 145 g 55
TEHATRNTET, $559), 45 Kempe HOAF- 1 P&
(7848 TS AE

Bugt AU AR, Gk AR, R
BHET LR S A, DL IR 6 R Ll
e BT, XN E), B
TI5), M E), FEREWIEE), LU
Wb (5282 53047 T 2 R 25 10HE , 7EIE R
LIRS =I5 V8T B [ 18y N2 I ki o WS )
BUZFASCI ), DL RORHEE TSR . e 55

Fro
& % x @

[1] JENSEN T R and TOFT B. Graph coloring problems[J].
Wiley-Interscience Series in Discrete Mathematics and
Optimization, 1995, 113(2): 29-59. doi: 10.1002/
9781118032497.ch2.

[2] DIAZ J, PETIT J, and SERNA M. A survey of graph layout
problems[J]. ACM Computing Surveys, 2002, 34(3): 313-356.
doi: 10.1145/568522.568523.

[3] BRODER A, KUMAR R, MAGHOUL F, et al. Graph
structure in the web[J]. Computer Networks, 2000, 33(1/6):
309-320. doi: 10.1016/S1389-1286(00)00083-9.

(4] VFEE, AEEEMS, ARRUR. MO B B R[] TR
4], 2015, 38(8): 1680-1704. doi: 10. 11897/SP.J.1016.2015.
01680.

XU J,LIZ P, and ZHU E Q. Research progress on the theory

[5]

(6]

[7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

(15]

(16]

[17]

of maximal planar graphs[J]. Chinese Journal of Computers,
2015, 38(8): 1680-1704. doi: 10.11897/SP.J.1016.2015. 01680.
KEMPE A B. On the geographical problem of the four
colors[J]. American Journal of Mathematics, 1879, 2(3):
193-200. doi: 10.2307/2369235.

FISK S. Advances in

10.1016,/0001-

Geometric
Mathematics, 1977, 24(3):
8708(77)90061-5.

MEYNIEL H. Les 5-colorations d'un graphe planaire Forment

coloring  theory[J].

298-340. doi:

une classe de commutation unique[J]. Journal of
Combinatorial Theory Series B, 1978, 24(3): 251-257. doi:
10.1016/0095-8956(78)90042-4.

VERGNAS M L and MEYNIEL H. Kempe classes and the
Hadwiger conjecture[J]. Journal of Combinatorial Theory
Series B, 1981, 31(1): 95-104. doi: 10.1016/S0095-
8956(81)80014-7.

MOHAR B. Kempe Equivalence of Colorings[M]. Graph
Theory in Paris, Birkh#user Basel, 2006: 287-297. doi:
10.1007/978-3-7643-7400-6 _ 22.

FEGHALI C, JOHNSON M, and PAULUSMA D. Kempe
equivalence of colourings of cubic graphs[J]. Electronic Notes
in Discrete Mathematics, 2015, 49: 243-249. doi: 10.1016/j.
endm.2015.06.034.

CERECEDA L, HEUVEL J V D, and JOHNSON M.
Connectedness of the graph of vertex-colourings[J]. Discrete
Mathematics, 2008, 308(5/6): 913-919. doi: 10.1016/j.disc.
2007.07.028.

MCDONALD J, MOHAR B, and SCHEIDE D. Kempe
equivalence of edge-colorings in subcubic and subquartic
graphs[J]. Journal of Graph Theory, 2012, 70(2): 226-239. doi:
10.1002/jgt.20613.

BELCASTRO S M and HAAS R. Counting edge-Kempe-
equivalence classes for 3-edge-colored cubic graphs[J].
Discrete Mathematics, 2014, 325(13): 77-84. doi: 10.1016/j.
disc.2014.02.014.

FIOL M A and VILALTELLA J. A simple and fast heuristic
algorithm for edge-coloring of graphs[J]. AKCE International
Journal of Graphs and Combinatorics, 2013, 10(3): 263-272.
EFTHYMIOU C and SPIRAKIS P G. Random sampling of
colourings of sparse random graphs with a constant number
of colours[J]. Theoretical Computer Science, 2008, 407(1/3):
134-154. doi: 10.1016/j.t¢s.2008.05.008.

DYER M, FLAXMAN A D, FRIEZE A M, et al. Randomly
coloring sparse random graphs with fewer colors than the
maximum degree[J]. Random Structures and Algorithms,
2006, 29(4): 450-465. doi: 10.1002 /rsa.20129.

HAYES T P and VIGODA E. A non-Markovian coupling for
randomly sampling colorings[C]. 44th Annual Symposium on

Foundations of Computer Science, 2003: 618-627. doi:



573

VF ok BRI IS S G R (4)

1569

(18]

(19]

20]

21]

22]

(23]

(24]

10.1109/SFCS.2003.1238234.

LUCZAK T and VIGODA E. Torpid mixing of the Wang-
Swendsen-Kotecky algorithm for sampling colorings[J].
Journal of Discrete Algorithms, 2005, 3(1): 92-100. doi:
10.1016/j.jda.2004.05.002.

MORGENSTERN C A and SHAPIRO H D. Heuristics for
rapidly four-coloring large planar graphs[J]. Algorithmica,
1991, 6(1): 869-891. doi: 10.1007/BF01759077.

SIBLEY T and WAGON §S. Rhombic penrose tilings can be
3-colored[J]. The American Mathematical Monthly, 2000,
107(3): 251-253. doi: 10.2307/2589317.

VIGOD E. Improved bounds for sampling colorings[C]. 40th
Annual Symposium on Foundations of Computer Science,
New York, 1999: 51-59. doi: 10.1109/SFFCS.1999.814577.
FRIEZE A and VIGODA E. A survey on the use of markov
chains to randomly sample colourings[C]. In Combinatorics,
Complexity, and Chance. Oxford Lecture Ser. Math. Appl. 34
53-71. Oxford Univ. Oxford. MR2314561. doi:
10.1093 /acprof:0s0/9780198571278.003.0004.

HAYES T P and VIGODA E. Coupling with the stationary

distribution and

Press,

improved sampling for colorings and
independent sets[J]. The Annals of Applied Probability, 2006,
16(3): 1297-1318. doi: 10.1214/105051606000000330.

BALASUBRAMANIAN R and SUBRAMANIAN C R. On

sampling colorings of bipartite graphs[J].  Discrete

(25]

(26]

(27]

VEak

Mathematics and Theoretical Computer Science Dmics, 2006,
8(1): 17-30.

PR, O I S5 S5 (R (2): 2 KRIEIIE ST 40
EEI. BT S E B %M, 2016, 38(6): 1271-1327. doi:
10.11999/JEIT160224.

XU J. Theory on structure and coloring of maximal planar
configurations and extending-
Journal of Electronics &

2016, 38(6): 1271-1327. doi:

graphs (2): Domino

contracting operations[J].
Information  Technology,
10.11999/JEIT160224.
VR, WO B R S 5 A (PR (3): AU (B S TE—4-
P ERE AR BT 55 B 2R, 2016, 38(6): 1328-1353.
doi: 10.11999/JEIT160409.

XU J. Theory on structure and coloring of maximal planar
graphs (3): Purely Tree-colorable and Uniquely 4-colorable
Maximal Planar Graph Conjectures[J]. Journal of Electronics
& Information Technology, 2016, 38(6):
10.11999/JEIT160409.

BONDY J A and MURTY U S R. Graph Theory[M].

1328-1353. doi:

Springer, 2008: 6-58.

95, 1959 44, B¥z, TEUFRGECN S S A ST
AP ENL AL 5 E B A



%38 L T
2016 47 H

BT 5 fF B ¥ M

Journal of Electronics & Information Technology

Theory on Structure and Coloring of Maximal Planar Graphs

(4) o -Operations and Kempe Equivalent Classes

XU Jin"
(Key Laboratory of High Confidence Software Technologies, Peking University, Beijing 100871, China)
(School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China)

Abstract: Let G be a k-chromatic graph. G is called a Kempe graph if all k-colorings of G are Kempe
equivalent. It is an unsolved and hard problem to characterize the properties of Kempe graphs with chromatic
number > 3. The Kempe equivalence of maximal planar graphs is addressed in this paper. Our contributions are
as follows: (1) Observe and study a class of subgraphs, called 2-chromatic ears, which play a critical role in
guaranteeing the Kempe equivalence between two 4-colorings; (2) Introduce and explore the properties of
o -characteristic graphs, which clearly characterize the relations of all 4-colorings of a graph; (3) Divide the Kempe
equivalent classes of non-Kempe 4-chromatic maximal planar graphs into three classes, tree-type, cycle-type, and
circular-cycle-type, and point out that all these three classes can exist simultaneously in the set of 4-colorings of
one maximal planar graph; (4) Study the characteristics of Kempe maximal planar graphs, introduce a recursive
domino method to construct such graphs, and propose two conjectures.
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1 Introduction

The importance of planar graphs is reflected in
two factors: mathematical theory and practical
applications. At a theoretical level, there are many
famous conjectures that have significant influences
in graph theory and even in mathematics, such as
the Four-Color Conjecture, the Uniquely Four-
Colorable Planar Graph Conjecture, the Nine-
Color Conjecture, and Three-colorable Problem
etc.ll. At a practical level, the planar graph theory
can be directly applied to the fields of science such
as circuit wiring®” and information sciencel.

Maximal planar graphs are an important
subclass of planar graphs. Each face of a maximal
planar graph is a triangle, so it is also called a
triangulation. Since the researching objects of the
Four-Color Conjecture can be confined to maximal

planar graphs, numerous topics around maximal
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planar graphs have attracted the attentions and
imaginations of researchers for more than a century,
including degree sequences, constructions, coloring
characters, traversability, and generating
operations¥. In the studying process of tackling
Four-Color Conjecture, scholars proposed many
such as

conjectures, Uniquely Four-Colorable

Planar Graph Conjecture and Nine-Color
Conjecture, which gradually form the central
research field on coloring theory of maximal planar
graphs.

In terms of graph coloring theory, Kempe
changes are proved to be one of the basic and most
powerful tools. A Kempe change is to exchange two
colors of a connected component of a 2-coloring
induced subgraph, and remain the colors of the
other vertices unchanged in a coloring graph. The
c-operation defined in this paper is the operation
that contains one or more Kempe changes under a
4-coloring (The specific definition is in Section 3).
A o-operation is in fact a coloring-derived
operation, which can induce a 4-coloring from
another 4-coloring of a graph G.

f and f of a k(>2)-

chromatic graph G are called Kempe equivalent,

Two  k-colorings
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if f' can be obtained from f by a sequence of
Kempe changes. Obviously, this is an equivalent
relation, by which we can classify all colorings of
G . A Kempe equivalent class of G is the set of all
the colorings that are mutually Kempe equivalent.
Especially, a 4-colorable maximal planar graph is
called a Kempe graph if any pair of 4-colorings of
G is Kempe equivalent.

The Kempe changes are introduced by Kempe
in his false proof of the four color theorem, after
which Fisk first systematically studied this topic
until 1977, showing that all 4-colorings of a
maximal planar graph G are Kempe equivalent if
G has no vertex with odd degreel®. Subsequently,
Meyniel™, in 1978, showed that all 5-colorings of a
planar graph are Kempe equivalent. In 1981,
Vergnas and Meyniel proved: all 5-colorings of any
simple graph not contractible to K, are Kempe
equivalent’®. In 2007, Mohar® proved that all
k-colorings of a planar graph with chromatic
number less than k are Kempe equivalent, and
proposed the following conjecture.

Conjecture 1° For k>3, all k-colorings of
connected k-regular graphs that are not complete
are Kempe equivalent.

In 2015, Feghali, et al' have addressed the
case when k£ =3 by showing that all 3-colorings of
a connected cubic graph G are Kempe equivalent
unless G is the complete graph K, or the
triangular prism. Additionally, we" prove that the
conjecture is true when k£ =4. Conjecture 1 is
open for k£ >5.

In 2008, Cereceda, et all™ studied the k-
chromatic characteristic graph P,(G) of a planar
graph G . The vertex set of P,(G)consists of all
k-colorings of G, and two k-colorings are joined
by an edge in P, (G) if they differ in color on just
one vertex of G . They proved that if G has
chromatic number £ €{2,3}, then P,(G)is not
connected, on the other hand, for k£ >4 there are
graphs with chromatic number % for which P, (G)
is not connected, and there are k-chromatic
graphs for which P, (G) is connected.

Some scholars have also considered Kempe

Liu Xiaoqing, Xu Jin, submitted to Dis. Math.

changes and Kempe equivalent classes on edge
coloring, such as McDonald and Mohar"?, Sarah
and Ruth™,

The complexity of graph algorithms has been

and so on.

investigated based on Kempe changes and Kempe
equivalent classes. The interested readers can refer
to Refs. [14-24].

This series of articles aim to establish the
coloring operation system of maximal planar
which

operations, one is the oc-operation , and the other is

graphs, contains two coloring-derived

the T-operation (also called the pseudo-edge-
induced coloring method, which will be introduced
and researched in another paper). For a given
maximal planar graph G, o-operations are very
likely not able to induce all 4-colorings (or some
desired one) of G from a given 4-coloring, while
T-operations can do well.

All graphs considered in this paper are finite,
simple, and undirected. For a given graph G, we
use V(G), E(G), d;(v), and Ng(v) to denote
the vertex set, the edge set, the degree of v, and
the neighborhood of v in G (the set of all
vertices adjacent to v ) respectively, written as V
E, d(v), and N(v) for short if no confusion. The
cardinality of the set V(G) is denoted as |V(G) |,
called the order of G. For a graph H = (V' E'), if
V'CV, E'CE, and two ends of each edge in FE'
belong to V', then we call H a subgraph of G.
And in the subgraph H, for Vu,veV(H), uwv
are adjacent in G, if and only if they are also
adjacent in H , then H is called an induced
subgraph of Ginduced by V', denoted by G[V'].
The join of two disjoint graphs G and H is the
result of joining each vertex of G with every vertex
of H,denoted by GV H. K, is a complete graph
having n vertices. A wheel is the join of a cycle
C, of n vertices and a trivial graph K,, and
denoted by W, , where C, and K, are called the

wheel-cycle and the wheel-center of W

respectively. Also, we write the wheel-cycle C, of
W, as C", where V(K;)={z}.

A vertex coloring f of a graph G, or simply
a coloring, is an assignment from a color set to its
vertex set. The coloring f is proper if any two

adjacent vertices are assigned the different colors.
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Unless special statement, any vertex -coloring

mentioned here is proper. A proper k-vertex
coloring of a graph G, a k-vertex coloring or a
k-coloringfor short, is a mapping f from the
vertex set V to the color set C(k)={12, -,
k} such that f(z)= f(y) for any zy€ E(G). A
graph G is k-colorable if it has a proper k-vertex
coloring. The minimum % for which a graph G is
k-colorable is called its chromatic number, denoted
by x(G).If x(G)=k, Gis called a k-chromatic
f of G

can be viewed as a partition {V,,V,,---,V,} of V,

graph. Alternatively, each k-coloring

where V, denotes the set of all vertices assigned
color i, called a color class of f. So it can be
written as f = (V;,V,,-,V,) . In other words,

2

k
V(@) =V, Vi = o, V,NV,=6,i=j,i,j =12k
i=1

where V, is an independent set of G, i=12,---,k.
The set of all k-coloring of a graph G can be
denoted by C, (G). For a k-chromatic graph G,
we use the notation C} (G) to denote the set of all
the partitions of vertex set of G, where each
partition is corresponding to a k-coloring , and we
call C}(G) the set of partitions of % color classes
of G.

Let G be a k-colorable graph, and f be a
k-coloring of G, where the color set is {1,2,---,k}.
The subgraph induced by vertices with color ior
tunder f, denoted by G/, is referred to as a 2-
coloring induced subgraph of G, where i, ¢t =
1,2,---,k,i = t. When there is no scope for ambiguity,
f.

we use G, instead of Gj;

A component of G, is
called an it -component.

A graph is said to be planar if it can be drawn
in the plane so that its edges intersect only at their
ends. Such a drawing is called a planar embedding
of the graph. Any planar graph considered in the
paper is assumed one of its planar embeddings. A
maximal planar graph is a planar graph to which
no new edges can be added without violating
planarity. A triangulation is a planar graph in
which every face is bounded by three edges
(including its infinite face). It can be easily proved
that maximal planar graphs are triangulations, and
vice versa.

The graph shown in Fig. 1 is called a funnel,

< Funnel top

« Funnel middle

Funnel
bottom

Funnel
bottom

A4

Fig. 1 The funnel

where the 1-degree vertex is the funnel top, the
3-degree vertex is the funnel middle, and the two
2-degree vertices are the funnel bottoms. If an
induced subgraph of a graph is a funnel, then it is
called a funnel subgraph of the graph. For more
details about funnels, please refer to this series of
articles (2).

Suppose that G is a 4-colorable maximal
planar graph with 6>4, and L is a funnel

subgraph of G . We define

fe={rreci@©), lrw=4
If f/(G)=¢, then L is called a potential 4-
chromatic funnel of G, and the set of all potential
4-chromatic funnels is denoted by L(G).

In this paper, we introduce the o-operation ,
and find that the inner mechanism that a new
4-coloring can be derived from a given 4-coloring by
o-operations is closely related with a class of
subgraphs, called 2-chromatic ears. Therefore, we
make an in-depth research on 2-chromatic ears in
Section 2. Section 3 introduces and explores the
which

clearly characterize the relations of all 4-colorings

properties of o-characteristic = graphs,
of a graph. Section 4 discusses the limitations of
o-operations , namely, some 4-colorings may not be
able to be derived from a given 4-coloring by
o-operations , based on which we partition the
Kempe equivalent classes of non-Kempe graphs
into three classes: cycle-type, and

studies  the

characteristics of Kempe graphs, introduces a

tree-type,
circular-cycle-type.  Section 5
recursive domino method to construct Kempe
graphs, and proposes two conjectures to describe
the properties of Kempe maximal planar graphs.

For more notations and terminologies, we refer
the readers to Refs. [25-27].

2 2-Chromatic Ears

In this section, we first give the definition and
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classification of 2-chromatic cycles, and then we
introduce the 2-chromatic ears, which is the root of
implementing o-operations continuously.

2.1 Related definitions of 2-chromatic cycles

Let G be a 4-colorable maximal planar graph,
H a subgraph of G, and fa 4-coloring of G. We
use f(H) to denote the set of all the colors
assigned to V(H) under f. The sets of all the
interior vertices and exterior vertices of any cycle
Cof @ are denoted by V' and Vo™, respectively.

Suppose that C is an even-cycle of G, f¢€
C}(G).If |f(C)|=2, then we call Ca 2-chromatic
cycle of f, and also say that f contains the 2-
chromatic cycle C'. The two colors in f(C) are
called cycle-colors, and the other two colors are
called non-cycle colors. For a 2-chromatic cycle C
of f, let u,v be two different vertices in C. If
w € E(G) and wwvis in the interior of C', then C
is called a 2-chromatic chord-cycle of f, and the
edge uv is called a chord of C; If there is a path
P (= uv) colored with f(C)in the interior of C
that connects v and v, then C is referred to as
a 2-chromatic chord-path cycle of f, and P is
called a chord-path of C; If C is neither a 2-
chromatic chord-cycle nor a 2-chromatic chord-
path cycle, then we call C a-chromatic basic
cycle.

For example, the cycle C shown in Fig. 2(a) is
a chord-cycle with a chord wv,y;; the cycle C shown
in Fig. 2(b) is a chord-path cycle with a chord-path
voyvsvs. Cp and C, both shown in Figs. 2(a)
and 2(b) are 2-chromatic basic cycles.

For a 4-colorable maximal planar graph G
under a 4-coloring, and a given 2-chromatic cycle
Cof G, which type the 2-chromatic cycle C
belongs to depends on the ways of planar
embedding of G . As the graph shown in Fig. 2(a),
if its planar embedding is converted to the graph
shown in Fig. 2(c), then the 2-chromatic cycle C,

(a) A 2-chromatic chord cycle

(b) A 2-chromatic chord-path cycle

is a 2-chromatic chord-path cycle with a chord-path
C and C, are the 2-

chromatic basic cycles. Unless special declaration,

U T Ty T4 T, T5Us Y5, While

all 2-chromatic cycles in the following argument are
2-chromatic basic cycles. For a coloring f € C} (G),
we denote by C?(f) the set of all 2-chromatic
cycles under f. A cycle C of G is 2-colorable if
there exists a coloring fe€CY(G) such that
|f(C)|=2. Use C*(G) to denote the set of all
2-colorable cycles of G . It is easy to show that

c@= U (2)

J€C1(G)

Let G be a 4-colorable maximal planar graph
with 6(G)>4, f a 4-coloring of G, and C,, C,
two 2-chromatic cycles of f. We say that C; and
C, are joint if the following two conditions hold:

(W (C)nf(Cy) =1;
QVENV(Cy) =0, VI NV(Cy)=¢.

Otherwise, €, and C, are disjoint.

Suppose C* (G) ={C,,Cy,-+,C,,} with m >2.
For any two 2-colorable cycles C,,C, € C* (@), if
there exist a sequence of 2-colorable cycles
C,,C,,---,C, with the corresponding 4-colorings
fishyoosfy, such that C; and C., (1<i<t—1)
are intersected under f;, then we say that C)and
C, are relevant, otherwise, C, and C, are
irrelevant.

For example, in Fig. 3, C,, C,, C;, C, are four
2-colorable cycles of C*(G); f,f are two
C,, C,, C; are three

successively intersected 2-chromatic cycles of f ;

colorings of G, where

C,, C, are two intersected 2-chromatic cycles of f,.

Therefore, it is not hard to see that C, and C,

are relevant.

2.2 Related definitions and characteristics of 2-
chromatic Ears

Suppose that Gis a 4-colorable maximal

vy

Y

% Y

(¢) A 2-chromatic basic cycle

Fig. 2 Diagrams of the chord cycle, the chord-path cycle and the basic cycle
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Fig. 3 An example of two relevant2-chromatic cycles C,, C,

planar graph, feC}(G),C e C*(f), f(C)={1,2},
and z,y are two different vertices in C' with the
same color under f. We use P(z,y) to denote a
path between x and gy with |V(P(z,y))[> 3. If
f(P(z,y)) ¢ {1,2} and | f(P(z,y)) |=2, then we call
P(z,y) a2-chromatic ear of C (or simply an ear of
C), and call z,y the ear roots of P(z,y). We
write Ed(C) for the set of all ears of C'. The ears
of Ed(C) are divided into two classes, inner ear
which is in the interior of C', and outer ear which is
in the exterior of C. If f(P(z,y))=1{13}, then
P(z,y) is called 13-ear. Analogously, we have 14-
ear, 23-ear, and 24-ear. Furthermore, f(P)\ f(C)
is called ear-edge color. Obviously, the ear-edge
color is neither 1 nor 2.

Let C be a 2-chromatic cycle of a 4-coloring,
and P(z,y) and P(z,y’) be two ears of C . If
f(z) = f(z'), then we say P(z,y) and P(z',y') to
be homologous; if z =2' and y=1y', then we say
P(z,y) and P(2',y") to be co-rooted. Obviously, if
two ears are co-rooted, then they must be
homologous, but the converse may not be true.

Suppose that P(z,y) and P(z',y’) are two
ears of a 2-chromatic cycle C. Wesay P(z,y) and
P(ay)
following conditions hold:

to be homochromatic if one of the

(1) Both P(z,y) and P(z',y')are inner ears or
outer ears, and f(P(z,y)) = f(P(z',y").

(2) P(z,y) and P(z',y') are homologous ears
with different ear-edge colors, and one is an inner
ear and the other is an outer ear.

Otherwise, we say P(z,y) and P(z',y') to be
heterochromous ears.

Suppose that P, P,,---,P,(m >2) are ears of a
2-chromatic cycle C'. We call them to be path-
connected if P UP, U---UP, 1is a path of G, and
to be cycle-connected if P, UP,U---UP, £(C" is

an even-cycle of G. LetQ(C) be the set of cycles
containing only ears of C'. A cycle is referred to as

an inner ear-cycle (resp. outer ear-cycle) if it
contains only inner (resp. outer) ears. In addition, if
a cycle contains both inner ear-cycles and outer
ear-cycles, then we call the cycle a mixed ear-cycle.
We write Q' (C), Q°(C), and Q™ (C) for the set
of inner ear-cycles, outer ear-cycles, and mixed ear-
cycles, respectively. It is not difficult to see that
QC)=Q' (C)uQ (C)uQ™(C) 3)
Fig. 4 contains 5 ears P, P, P,, P, and P, of
a 2-chromatic cycle C. P, P,, P,, P, are mutually
homologous; P, and P, are co-rooted; P, P, P,
are inner ears; P, and P, are outer ears. P, P,
P, (resp. P, P,, P,) are path-connected; P, P, are
cycle-connected.

Fig. 4 The diagram of ears, co-root ears, and homologous ears

Theorem 1 Suppose that Gis a 4-colorable
maximal planar graph with §(G) >4, feC}(G).
If f contains only one 2-chromatic cycle C' , say
f(C)=1{12}, then

(1)Every cycle in Q' (C)and Q°(C) contains
some heterochromous ears of C';

(2)The operation of interchanging the colors of
all 34-components in the interior of C can induce a
new coloring f° such that f° contains a 2-
chromatic cycle €’ different from C if and only if

C'eQ"(C) (4)
and any pair of ears of ¢’ are homochromatic.

Proof (1) Suppose that there exist a cycle C'
in Q' (C)or Q°(C), which is consisted of only
homochromatic ears. Then, by the definition of
homochromatic ears, we have that any pair of ears
of C'" not only are homologous, but also have the
same color set under f. Therefore, C' is a 2-
chromatic cycle of f . This contradicts the
assumption of C'.

(2)Necessity. AsC'is the unique 2-chromatic
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cycle of f, it has that C'e Q™ (C). Notice that
any pair of ears of C’are homologous. If there are
two heterochromous ears P, P' in C',then P, P’
are two inner ears, or two outer ears, or one of
P, P' is an inner ear and the other is an outer ear
of C. However, in any case we can see that C' is
by no means a 2-chromatic cycle of f°, and a
contradiction.

Sufficiency. €' e Q™ (C) implies that ' is a
cycle, and any pair of ears of C’ are homologous.
Suppose that P, P' are a pair of ears of C’.
Obviously, P, P'are homochromatic. When P, P’
are two inner ears (or outer ears), then f(P)
= f(P'); when one of P, P' is an inner ear and the
other is an outer ear, then | f(P)U f(P') =3, and
{12} ¢ f(P)U f(P"). PUP  are

colored with exactly two colors under f¢, i.e. C’

Therefore,

is a 2-chromatic cycle of f¢. This completes the
proof of the theorem.

Suppose that G
planar graph, fcC)(G), and Cis the unique
2-chromatic cycle of f, f(C)={L2}. Let f° be
a new coloring obtained from f by the operation

is a 4-colorable maximal

of interchanging the colors of all 34-components in
the interior of C'. If f°contains at least two 2-
chromatic cycles, then any 2-chromatic cycle C’

(= C)of f° isconsist of only homochromatic ears,
as described in the following.

(1) If C" has exactly two homochromatic ears,
then one is an inner ear, and the other is an outer
ear, shown in Fig. 5(a);

(2) If C" has three homochromatic ears, then
there are two possible structures shown in Fig. 5(b)
and 5(c), respectively;

(3) If C" has four homochromatic ears, then
its structure may be the one shown in Fig. 5(d) or
Fig. 5(e);

(4) If C'contains five or more homochromatic

ears, then its general structure is shown in Fig. 5(f).

(a) Two homochromatic ears

(d) Four homochromatic ears

(b) Three homochromatic ears

(e) Four homochromatic ears

3 The o-Operation and o- Characteristic
Graphs

XU introduced the tree-coloring and cycle-
coloring in Ref. [26]. For the convenience of
description, we restate them here. Let G be a 4-
colorable maximal planar graph with color set
{1,2,3,4}, feCY(Q). If3it € {1,2,3,4} such that
G/ has a cycle, then fis referred to as a cycle-
coloring, and we «call G is
Conversely, if Vit e {1,2,3,4},
cycle, then f is referred to as a tree-coloring of G,

cycle-colorable.
G!  contains no

and G is tree-colorable. If G is tree-colorable
(cycle-colorable) but not cycle-colorable (tree-
colorable), the G
colorable (purely cycle-colorable). Furthermore, if

is also called purely tree-

G is both tree-colorable and cycle-colorable, then
G is also called mixed colorable. Obviously, for
any 4-colorable maximal planar graph G, colorings
in C}(G) can be partitioned into two classes:
cycle-colorings and tree-colorings.
3.1 The o- operation and Kempe equivalent classes
Let G be a 4-colorable maximal planar graph
with color set {1,2,3,4}, and f € C}(G). Suppose
C is a 2-chromatic cycle of f such that f(C)
={1,2}. A o-operation respect to C of  f,
denoted by o (f,C)(abbreviated as o(f) if there
is no confusion), is the operation of interchanging
the colors of all the 34-components inside C.
Obviously, a o-operation is a kind of coloring-
derived operations, by which a new cycle-coloring
(denoted by f°) can be obtained from a given
cycle-coloring f, namely
o(f.C)=1/f (5)
We say that fand f are complementary respect to
C . Equation (5) can also be represented as o(f,C)
= f¢ if there is no confusion. It is easy to see that,

when there is only one 34-component inside C',

(¢) Three homochromatic ears

(f) More than five homochromatic ears

Fig. 5 Possible structures of cycle-connected and homochromatic ears, where C is indicated by a solid line
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then a o-operation is equal to a Kempe change;
when there are m(>2) 34-components inside C,
then a o-operation contains m Kempe changes.
Therefore, f¢ and f are Kempe equivalent.
Let f, €C}(G), we call
Fh(@)& {f; f and f, are Kempe equivalent,

feci(G) (6)
a Kempe equivalent class of f, .

An 1l-order maximal planar graph shown in
Fig. 6 has totally eight 4-colorings, denoted by
fi ~ f, respectively. For f, £, f, f,, it is not
difficult to see o(f,C\)=f; o(h,Cy)=f; o(f,C;)
= f,. Moreover, G has seven 2-colorable cycles
C, ~ C. in total, thus | C*(GQ)|=7.

The following is a straight forward result by
the definition of o -operations:

Theorem 2 Suppose fis a 4-coloring of G,
and C is a 2-chromatic cycle of f. Then

o(o(£,C).C)=f (7)

The aim of the c-operations is to derive the
Kempe equivalent class F/ (G) of fin C(G) by
a sequence of o-operations starting with a 4-
coloring f. It has been known that, all 5-colorings
of a planar graph are Kempe equivalent. But the
situation is different for Cf (G), which will be
discussed later.

3.2 Definition of o- characteristic graphs
In this section, we introduce o -characteristic

graphs for o-operations, which clearly chara-

cterize the relations of all 4-colorings of G .

Let G be a 4-colorable maximal planar graph,
and CY (G)={fi b
graph of G, denoted by G, is a graph with the
vertex set {f,f.---,f,} such that two vertices f

and f are adjacent in Gj if and only if they are

'} . The o-characteristic

complementary respect to 2-chromatic
it =12--,n,i=t By this
definition, we can view a o-characteristic graph as
in which the label

appearing on an edge is a 2-chromatic cycle that

some

cycle ¢ in G for
an edge-labelled graph,

results in two complementary colorings (the two
ends of the edge). When we only concern the
topological structure of a o-characteristic graph,
the labels in G] can be deleted.

The graph G shown in Fig. 6 has totally
eight 4-colorings. Its o-characteristic graph and
corresponding topological structure are shown in
Figs. 7(a) and 7(b). It is evident that Gf is
connected and is a tree. Therefore, we can obtain
all 4-colorings of G by o-operations based on
any given 4-coloring. In addition, consider the
icosahedron; it has totally ten 4-colorings, each of
which is a tree-coloring. So its o-characteristic
graph is an empty graph of order 10.

3.3 Basic properties of o -characteristic graphs

Let G be a 4-colorable maximal planar graph.
If |[C)(G)|=1, then we call G a uniquely four-

colorable maximal planar graph.

Fig. 6 Examples of complementary colorings
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—9¢ o — ¢ o . ,, .
G |k @ g i h i Obviously, Gf and C)(G) are tightly
G related with each other. Thus it can be seen that
?—‘0 fi fQ—o Ji exploring the structure of GJ is an essential work
5 5
G . for investigating C] (G). To do this, we will study
o koo 3§ f.?_‘,fb_ﬁ each Kempe equivalent class F/(G) of fe

(a) The o-characteristic graph (b) The topological structure

Fig. 7 The o- characteristic graph and its topological
structure of the graph shown in Fig. 6

Theorem 3 For a 4-colorable maximal planer
graph G ,let G] bethe o-characteristic graph of
G . We have

(1) G is a uniquely four-colorable maximal
planar graph if and only if G] = K| ;

(2) For any feV(G]), dg(f)=Fk if and
only if f containsk 2-chromatic cycles;

(3) If there exists a f € C} (G), which contains
k(>1) 2-chromatic cycles, i.e. dy, (f)=k, then

Y (G)| > k+1 (8)

Among all maximal planar graphs with order
at most 11, tree-colorings account for about 2
percent of all 4-colorings®. We conjecture that the
number of tree-colorings is much less than that of
cycle-colorings of maximal planar graphs with
6 >4 . Hence, for a given cycle-coloring f of a
4-chromatic maximal planar graph G, it is
possible to derive all 4-colorings of Cf (G) from f
by means of the o-operations.

Theorem 4 Let G be a 4-colorable maximal
planar graph. If G; is connected, then the running
time of algorithms generating all 4-colorings is
greater than that of algorithms generating one 4-
coloring by only |V(G;I )| —1.

According to Theorem 4, if G
chromatic Kempe maximal planar graph, then the

is a 4-

algorithm finding all 4-colorings is polynomial time

equivalent to the algorithm finding one 4-coloring.

39 Gg
TA_D B2
D D
() A

(a) A subgraph of GY

Y (@) .

Theorem 5 LetGbe a 4-colorable maximal
planar graph with §(G)>4, and fecC)(G) .
Then, G contains no triangles.

Proof By contradiction. Suppose that G7
LbAL. Without loss  of

contains a triangle

generality, we assume

o(£:C) = b o (5 C)=hy o (5:Cs) = (9)
Then, C,,C, € C*(f,), C,.C5 €C*(f), C),Cy€
C’(f,), as shown in Fig. 8(a). Let C(4)=
{1,2,3,4} be the color set. Denote by V*lin the set
of vertices in the interior of C;and with color not
appearing on C,, for i =1,2. We need to consider
two cases as follows.

Case 1
fi; see Fig. 8(b). Here, colors assigned to C, and

C,,C, are disjoint under the coloring

C, can be the same or not, but the proofs are
analogously.

Obviously, Vu e VC*Iin , we have f(u)= f,(u);
and Vo e V(G)\Vi", we have f(v)= f(v) (see
Figs. 8(b) and 8(c)). Similarly, Vu e Vg;”, it has
that f(u) = fi(u), and YveV(G)\Vy", fi(v)=
f(v) (see Figs. 8(b) and 8(d)). Therefore,
Vu e Vi UVEE, f(u) = fy(u),and Vo € V(G)\ V"
UVC*_;“ , h(v) - f;(v). Thus, there does not exist a 2-
chromatic cycle C, satisfying the condition V;;“
=Ve UV for f,f, and a contradiction.

Case2 (,C, are joint under the coloring f; .
Then f (C,)= £ (C,). Without loss of generality,
we assume f (C))={1,2} and f (C,)={1,3} (see
Fig. 9(a)). Let uw e VZ"NV(C,) and Vi* NV (C,).
Then it has that fi(v)=3, f(v)=2; f(uv)=4,
Lv)=2; fi(w)=3, fi(v)=4. Clearly, f, does

Cl 02
O@ 0@@
)
Qay ®Q OO
D @

(

d) f3

38 Cg
D O @ @
O @

) >
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Fig. 8 The first case of the proof of the Theorem 5: C},C, are disjoint
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Fig. 9 The second case of the proof of the Theorem 5: C,,C, are joint.

not contain any 2-chromatic cycle C;, such that f,
and f, are two complementary colorings respect
to Cj; a contradiction.

This completes the proof of Theorem 5.

By Theorem 5, it has that the o-
characteristic graph G of a 4-colorable maximal
planar graph G withé >4 is triangle-free, which

means that the induced subgraph Gy [Nf (G)] is a

star, where N/ (G) is the closed neighborhood of
vertex f in Gy . So, we have,

Corollary 1 Let G be a 4-colorable maximal
planar graph with 6 >4 . Then, for any cycle-

coloring f €C} (G), the induced graph Gy [Nf (G)}

is a star.

Theorem 6 LetG be a 4-colorable maximal
planar graph, and f € C} (G). Suppose that C is
a 2-chromatic cycle of f, anddg (f)=1. If o(f)
= f“has degree at least 2 in Gy, thenG has a
4-coloring f € CY (G) such that |f(C)|>3.

Proof Since|C*(f)|=1, we take a 2-
chromatic cycle Cof f, and assume f(C)={12}
(see Fig. 10(a)). Because f° contains at least two
2-chromatic cycles, thus there exist at least a pair
of vertices of C assigned the same color under f,
say v;,v,, based on which there are a 14-ear
outside C and a 13-ear inside C (see Fig. 10(a)),
where we assume that f(v;)= f(v,) =1. Now, we

Fig. 10

can obtain a 4-coloring f° by implementing a
Notice that f¢

contains at least two 2-chromatic cycles C and

o-operation respect to C .
C" shown in Fig. 10(b). Therefore, we can obtain a
new 4-coloring f' by implementing a o-operation
respect to C', and |f(C)|=3 (see Fig. 10(c)).
Hence, the conclusion holds.

Theorem 7 Suppose that G is a 4-colorable
maximal planar graph with 6(G)> 4. Then, Gy
does not contain any pair of vertices with degree 1
and 2, respectively.

Proof To the contrary, suppose that f, f,
are two adjacent vertices in G such that
dgr (i)=1 and dg(f;)=2. Let C; be the
unique 2-chromatic cycle of f, and let f, contain
two joint 2-chromatic cycles C),C,. Clearly, f
and f, are complementary respect to C.
Without loss of generality, assume that f (C))=
{12}, £ (01)2{1’2}’ b (02> ={1,3}. We use Glcla
Gfl to denote the subgraphs of G induced by
UV
to denote the number of ij- components in G,
for 4,5 € {1,234}

Since the graph G, under the coloring f,, has

and C| UVCOI‘“‘, respectively, and use 7
and 7= j.

a unique 2-chromatic cycle C,, we have that G,,
consists of two connected components, and G,
Gy, Gyy , Gy, are connected. Now, we can see that

the 7, l4-components of G{! are connected to a

The diagram for the proof of Theorem 6



57

XU Jin: Theory on Structure and Coloring of Maximal Planar Graphs(4) 1579

component by the (r, —1) 14-paths of Gi'; and
the 7, 13-components of G' are connected into
one component by the (r; —1) 13-paths of Gy

Then, we can obtain a 4-coloring f, by
exchanging the colors of 34-componentinside C.
Under the coloring f,, it is easy to see that the
number of 13-components in G is 7, , and GI!
still contains (r; —1) 13-paths with both the
initial vertex and the terminus vertex on C; .
Because all of these 13-paths connect the n,
13-components of Glc1 into a component with a
13-cycle C,, it has that 7, >, . In addition, the
number of 14-components in Gis changed into
ny,and Gy still contains (r, —1) 14-paths with
both the initial vertex and the terminus vertex on
C,. Because n; >rn,, it follows that the n, 14-
components in G can not be connected into a
component by the (r, —1) 14-paths. Hence, G,
is disconnected under the coloring f,, ie. Gy
contains a 2-chromatic cycle, and a contradiction.
Hence, the result holds.

The case of G being disconnected is the key
point of our research, which will be studied deeply

in the following section.

4 Types of Kempe Equivalent Classes of
Non-Kempe Graphs

Let G be a 4-colorable maximal planar graph,
and f,f €C)(G).
equivalent,

If f and f are non-Kempe
then f' can not be obtained by
implementing a series of o-operations
with f. The reason can be attributed to the 2-
chromatic cycles of f: (1) C*(f)=¢, ie fis a
(2) C*(f) contains
unchanged-cycles (the definition will be defined

starting

tree-coloring;; 2-chromatic
later); (3) C?(f) contains the circular 2-chromatic
cycle (the definition will be defined later). Based on
these three cases, we divide Kempe equivalent
classes of non-Kempe graphs into three classes:
tree-type, cycle-type, and circular-cycle-type. In
the following, we will introduce these three types,
respectively. For convenience, we use the notation
w(GYy) to denote the number of Kempe equivalent
class of G.
4.1 Tree-type Kempe equivalent class

If f

is a tree-coloring of a 4-colorable

maximal planar graph G , then, C°(f)=¢ ,
namely, all six 2-colored induced subgraphs are
connected. Therefore, F/(G)={f}. We refer to
this Kempe equivalent class as a tree-type Kempe
equivalent class of non-Kempe graph G, and call
G a tree- type maximal planar graph. Thus, for any
f el (G) and f = f, we have

féF(a) (10)
It follows that

Theorem 8 Suppose that G is a non-uniquely
4-colorable maximal planar graph. Then, w(GY)
>2; If Gis purely tree-colorable, then w(GJ)=
|CY(G)| . If G is mixed colorable and C(G)
containst tree-colorings, then w(Gy)>t+1 .

4.2 Cycle-type Kempe equivalent classes

Suppose that G is a 4-colorable maximal
planar graph, feC}(G), and C<cC*(f). If
Ve F1(G), |f(C)|=2, then we call C a 2-
chromatic unchanged-cycle of f, f a 2-chromatic
unchanged-cycle coloring of G, and G a cycle-
type maximal planar graph based on C'. By this
definition, if we denote by f° the resulting
coloring obtained by implementing o-operations
respect to C' under f, then we have,

C*(f)=C"(f) (11)
In Eq. (11), we do not consider the colors on
2-chromatic cycles in C*(f) and C?(f°). That is
to say, for a 2-chromatic cycle C' both in C* (f)
and C?(f°), f(C) may be different from f°(C).

Obviously, the cycle-coloring f* satisfying Eq.
(11) is also a 2-chromatic unchanged-cycle coloring
of G . The cycle-type maximal planar graph shown
in Fig. 11 has totally four 4-colorings f, f;,f; and
fi, where f; and f, are two complementary
2-chromatic unchanged-cycle colorings respect to
C, and the unique 2- chromatic unchanged-cycle
of them is 12-cycle.

Fig. 12 exhibits two cycle-type maximal planar
graphs G, and G,, each of which contains two
2-chromatic unchanged-cycles, where two 2-
chromatic unchanged-cycles in G, have two
common vertices, and G, has two disjoint 2-
chromatic unchanged-cycles (see Fig. 12(1), marked
by thick lines). Figs. 12(a)~12(j) exhibit all the 4-

colorings of G, and the corresponding o-
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(a) fi: cycle-coloring,12-cycle (b) f: cycle-coloring, 12-cycle

(c) fy: tree-coloring (d) f: tree-coloring

Fig. 11 An example of cycle-type maximal planar graph containing only one 2-chromatic unchanged-cycle

(k) (G

Fig. 12 Two maximal planar graphs containing two 2-chromatic unchanged-cycles

characteristic graph is shown in Fig. 12(k).

Let G be a 4-colorable maximal planar graph,

feC](G),andC € C*(f).If 3f € C}(G) satisfies
7€) =3 (12)
then we say C'is breakable.

Theorem 9 Let G be a 4-colorable maximal
planar graph with 6(G)>4 , C, and C, be two
relevant 2-colorable cycles of G. Then both
and C, are breakable.

Proof The result follows from definitions of
the  2-chromatic  colorable-cycles and  o-
operations.

For two 2-chromatic cycles with the condition
of Theorem 9, it is easy to see that these two cycles

are breakable. However, we can not break a

2-chromatic /by
implementing a series of o-operations starting
with f, i.e. we can not obtain a f €C}(G)

satisfying Eq. (12) through o-operations and f.

unchanged-cycle C  of

So, fand f" are not Kempe equivalent. The root
reason why fand f are not Kempe equivalent is
the 2-chromatic unchanged-cycle. We refer to such
equivalent class F/(G) as a cycle-type Kempe
equivalent class. For a 4-coloring set containing
exactly k(>2) 2-chromatic unchanged-cycles, the
induced subgraph in Gj induced by this set is a
k-dimensional  hypercube. The t¢dimensional
hypercube graph (#hypercube for short), written
as B', is a t-regular graph with vertex set

V(Bt):{(xhxm”"xt);miEB:{O’l}} <13)
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and vertices X,and X, of B'are adjacent if and
only if
dy (X, X,) =1 (14)
whered, (X, X,)is the Hamming distance between
X, and X,, i.e. the number of pairs of different
elements of two vectors.
Clearly, the following Eq. (15) holds.
[B(B')=t-2"" (15)

Theorem 10
maximal planar graph with §(G) >4,

Suppose G is a 4-colorable
f is a
4-coloring of G containing exactly k& 2-chromatic
cycles, and all these cycles are 2-chromatic
unchanged-cycles.  Then, |Ff (G)| =2 and
G[F (@) = B

Proof
G containing exactly £ 2-chromatic cycles C),

Suppose f is a 4-coloring of
C,,---,C, , and all these cycles are 2-chromatic
each C;, (1<i<k), we
denote by 1 if we implement a o-operation respect

unchanged-cycles. For

to C,, otherwise by 0. Then, we can establish a
none-one correspondence between 2-chromatic
unchanged-cycles C,,C,,---,C, and a 0-1 sequence
of k-length .

operation

Because implementing one o-
C,(1<i<k)

corresponds to a coloring of G, which means that

respect  to exactly

there is one 0-1 sequence of {(z,2y,,2;)
cx; =0,1,4=12,---,k} corresponding to a coloring
of F/(G), it follows that the connected component
of GJ containing f has at least2" colorings.

On the other hand, without loss of generality,
k-length 0-1 sequence
(0,0,--,0). Let f(1<

i <k) be the resulting coloring after implementing

we assume that the
corresponding to f is

a o-operation respect to C;(1<i<k). Then, f

induces exactly k complementary colorings.
Similarly, we can prove that each coloring
ﬁ(l <i<k) induces exactly k& complementary

colorings. Therefore, we can further prove that each
4-coloring of the 2" colorings exactly induces &
complementary colorings. Notice that each 4-
coloring can induce its complementary coloring if
and only if the Hamming distance between the two
k-length 0-1 sequences corresponding to the two
coloring is equal to 1. Hence, the graph formed by
this 2¥ 0-1 sequences corresponding to the 2*

4-colorings is a hypercube.

Obviously, these 2" 4-colorings are closed
under o-operations, i.e. they can not induce any
other 4-coloring by o-operations, except these 2"
4-colorings. This completes the proof of the
theorem.

Now, a question naturally arises. Is any 2-
chromatic cycle of any 4-coloring breakable? The
answer is positive, we will deal with the issue in
later articles of this series. We propose it as a
conjecture here.

Conjecture 2 Suppose that G is a 4-
colorable maximal planar graph with 6 >4 . Then,
any 2-chromatic cycle in G is breakable.

4.3 Circular-cycle-type Kempe equivalent classes

Let G be a 4-colorable maximal planar graph
with §(G)>4, CCC*(G). If the following three
conditions hold: (1) VC,,C, € C, C, and C, are
relevant; (2)|C|>2; (3)C is a set of maximal
relevant cycles, i.e. C*(G)\C contains no 2-
chromatic cycle C' relevant to any 2-chromatic
cycle of C. Then, we call each 2-chromatic cycle of
C a circular 2-chromatic cycle, and every coloring
of F/(G) a circular-cycle coloring, where f¢€
C) (G) contains CceC

relevant to some 2-chromatic cycle of C\ C, and

a 2-chromatic cycle
C the set of circular 2-chromatic cycles of F/(G).
Furthermore, the set consisting of f and all
colorings obtained by implementing o-operations
starting with f respect to any 2-chromatic cycle
in C is referred to as the set of circular 2-
chromatic cycles respect to C, denoted by F!(G).
If F/(G) contains
cycle coloring, then we refer to the Kempe

no 2-chromatic unchanged-

equivalent class containing F/ (G) as the circular-
cycle-type Kempe equivalent class. If G contains
a circular-cycle-type Kempe equivalent class, then
we call G a circular-cycle-type maximal planar
graph.

Fig. 13 gives two graphs G and H with
their 4-coloring f and g, respectively. It is not
hard to verify that f is a 2-chromatic unchanged-
cycle coloring, and also a circular-cycle coloring.
The specific analysis is as follows.

(1) f s

coloring based on the cycle C, = v,v,0,0,7;;

a 2-chromatic unchanged-cycle

(2) fis a circular-cycle coloring based on the
circular 2-chromatic cycles set C = {C,,C,,C,,C;,
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(b) G{[F(a))

(@) GFIE())

(e) HY[FY (H)]

(£) HI[E(H)

Fig. 13 Two examples of cycle-type and circular-cycle-type Kempe equivalent classes

Cs}, where C, = wuyuguyuy, Cy = BTy, Tu, Ty,
Cy =
the set of circular-cycle colorings
respect to C FL(G)={f £, fh 1}, where [ =
0(f7c2)7 h= U(-fl703>7 k= U(-ﬁ2704)’ ]04:0'(]3,05)-
The subgraph of G¢ induced by F!(G) is shown
in Fig. 13(d).

The coloring ¢

Cf = TyUygT3 Ty T5Uy To, Cy = zuyuyu, @,

Uy U Ty Uy Uy

is a 4-coloring of H, and
contains two sets of circular 2-chromatic cycles:
C, and C,, where C,={C,,C,,C,,C,,Cs}, C'=
Cy = Ystathysysvy, Cs =
Cs = y10,%y3Ysvy,  Cg=

Cy = nyupuguy,  Cy =

Two circular-cycle

f.. Here, C, =vuvv,v,,

Y1 VaUsy,

U UyUztty, O = TyllyTaTy T30y,

Ci=00,y 5,
UptyTyty, Oy = Tyl Ty Ty
coloring sets respect to C,and C, are [ (H)
={9,91,9:-95,0.} and  F¢ (H)={9,95 9,995},
respectively, where ¢, =0(g,C,), 9, =0(4,,C,),
95 =0(0,C5), 9. =0(95C1), 9=0(9:,C5), g5 =
0(.9506)’ 9620(95507)7 9: = 0(96:Cs): 95=0(9;,Cy),
g=0(g5,Cyy). The Fig. 13(e) and Fig. 13(f)
illustrate the subgraphs of HY induced by F¢ (H)
and F¢ (H), respectively.

(3) F/ (@) is a cycle-type Kempe equivalent
class. The connected component of Gj containing
f is shown in Fig. 13(b).

cycle-type Kempe equivalent class.

F(H) is a circular-

From the two examples shown in Fig. 13, the
Kempe equivalent class induced by a 4-coloring f
of CY(G) is of one of the following types.

Pure cycle type It contains one or more
2-chromatic unchanged-cycles, as shown in Fig. 11
and Fig. 12.

Mixed type It contains not only 2-chromatic
unchanged-cycle but also circular 2-chromatic cycle,
see Fig. 13(a).

Pure circular-cycle type It contains one or
more circular 2-chromatic cycles. See the coloring
g shown in Fig. 13(b) that contains two circular
2-chromatic cycles.

Remark 1 There exists some graph that has
the different

colorings of the graph, but these colorings belong to

same 2-chromatic cycle under
different Kempe equivalent classes.

Remark 2 LetGbe a maximal planar graph
with § >4 . It is possible that C} (G) contains 1
to 3 types of Kempe equivalent classes, and also
contains more than one Kempe equivalent classes
with the same type. For instance, the icosahedron
contains ten tree-type equivalent classes.

As we have known, the o-operation can not
induce a Kempe equivalent class of G from
another Kempe equivalent class of G. In order to
solve this problem, we put forward two approaches
to overcome this problem: breaking-cycle method
and breaking-tree method. For this, we need to
further study cycle-type maximal planar graphs
and circular 2-chromatic cycle-type maximal planar
graphs, which will be given in the later paper of this
series of articles.
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5 Kempe Graphs

If a 4-colorable maximal planar graph G with
6 >4 is a Kempe graph, then we can induce all
4-colorings of C}(G) from a given 4-coloring by
o-operations. To characterize such graphs, this
section introduces a method to recursively
construct Kempe graphs based on the extending
domino configuration operations, and proposes two
conjectures.
5.1 A conjecture of Kempe graphs

For a 4-colorable maximal planar graph G
with 6(G)>4,if G is a non-Kempe graph, then
there are three types of Kempe equivalent classes:
tree-type, cycle-types, and circular-cycle-type.
Let G be a 4-colorable

maximal planar graph with ¢6(G)>4. Then G is

Conjecture 3

a Kempe graph if and only if the Kempe equivalent
class of G 1is not tree-type, cycle-type, or circular-
cycle-type.

The Conjecture 3 is relevant to Uniquely Four-
Colorable Maximal Planar Graph Conjecture. If
the Uniquely Four-Colorable Maximal Planar
Graph Conjecture is true, that is, every uniquely
four-colorable maximal planar graph is a recursive
maximal planar graph®l then each 4-colorable
maximal planar graph G with 6(G)>4 has at
least two different 4-colorings. If G is tree-type,
then G is not a Kempe graph, because any tree
coloring can not induce any other 4-coloring of G
by o -operations.

The Conjecture 3 is also relevant to Conjecture
2. Suppose that there exists a 4-coloring f €
OV (G) with a 2-chromatic unchanged-cycle C. If

Conjecture 2 is true, then the cycle C is breakable.

Consequently, 3f € Cy (G), such that [f(C)]>3.
But f and f by the o-
operations. Therefore, G is not a Kempe graph.

are unreachable

However, even if the Conjecture 3 turns out to

be true, we can not know the characteristics of
Kempe graphs from its types of Kempe equivalent
classes. For further research on Kempe graphs, we
then propose the domino recursive construction
method.

5.2 Constructions of Kempe graphs

In the second paper of this series of articles®!,
we proved that every maximal planar graph G w1th
ordern(>9) and é6(G)>4 has an ancestor-graph
of order (n—2) or (n—3)and minimum degree
not less than 4. In other words, there are at least
one of five basic domino configurations of Fig. 14 in
G . For convenience of statement, we write these
five basic domino configurations shown in Fig. 14 as
W;, VVslv Wf, stz’ and VVGZ.

Let G be a 4-colorable maximal planar graph
n(>7) and 6(G)>4. Suppose
and P,
2-length. After implementing an extending 4-wheel

having order
that G is non-separable, is a path of
operation on P;, there must yield a new domino
configuration W,. So we call this operation an
extending W, operation, and the graph obtained
by the extending W, operation is denoted by
¢ (G).
obtaining the basic domino configurations shown in
Figs. 14(b)~
wheel operations in G as the extending W,

Similarly, we refer to the processes for
14(e) through the domino extending

operation, the extending W, operation, the
extending W7 operation, and the extending W/
operation. These basic domino configurations are
denoted by (" (G), (" (G), ¢ (@), and ¢" (),
respectively.

Given that the natural coloring f' obtained by
implementing a domino extending wheel operation
under a 4-coloring f, we can prove Theorem 11
through the following three cases: one of f and
f' is tree-type; one of f and [ is cycle-type;

one of f and f' is circular cycle-type.

PPt

(b) We

w? w2 e) W

Fig. 14 Five basic domino configurations
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Theorem 11 Let G be a 4-colorable
maximal planar graph with 6(G)>4 . Then
CW"ll (G) and CW"? (@) are two Kempe graphs if and
only if Gis a Kempe graph.

In terms of CWf’l (G) and CWf’z (G) , we propose
a conjecture as follows.

Conjecture 4 Let G be a 4-colorable Kempe
maximal planar graph with 6(G)>4. Then
¢ (G) and ¢ (G) are two Kempe maximal
planar graphs if and only if

(@) <2 (16)

A further research on Kempe maximal planar
graphs will be given in later papers of this series of
articles, which include the proofs of Theorem 11
and Conjecture 4, as well as the relations between
G and CWSZ (G), etc.

6 Conclusion and Prospection

It is generally known that showing the
characteristics of Kempe graphs is still a difficult
and hot problem. Although there are many
literatures in this field, it is hard to find any
necessary and sufficient condition of a k-chromatic
Kempe graph. Hence, the currently main research
focuses on the Kempe equivalence of some special
graphs, such as regular graphs. In this series of
articles we are concerned with maximal planar
graphs.

The main contributions of this paper are
summarized as follows: (1) We observe that the
inner mechanism that two 4-colorings in maximal
planar graphs being Kempe equivalent is closely
related with a class of subgraphs, called 2-
chromatic ears. So we make an in-depth research on
2-chromatic ears. (2) We introduce and explore the
which
clearly characterize the relations of all 4-colorings
of G.
classes of non-Kempe graphs into three classes:

properties of o-characteristic — graphs,

(3) We partition the Kempe equivalent

tree-type, cycle-type, and circular-cycle-type, and
point out that all these three classes can exist
simultaneously in the set of 4-colorings of one
maximal planar graph. (4) In terms of Kempe
maximal planar graphs, we make a research on
their characteristics, put forward a recursive

domino method to construct such graphs, and

conjecture that ¢ (G) and ¢ (G) are two
Kempe maximal planar graphs if and only if the
number of potential 4-chromatic funnel subgraphs
of G is less than two.

We will gradually make comprehensive in-
depth studies on three types of Kempe equivalent
classes of non-Kempe graphs in later papers of this
series of articles. Especially, we will show a
necessary and sufficient condition of Kempe
maximal planar graphs.
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