### 多入单出正交空时分组码系统的调制识别

钱国兵\* 李立萍 郭亨艺(电子科技大学信息工程系 成都 611731)

摘 要: 在现代无线通信系统中,采用正交空时分组码(STBC)的多天线发射技术是提高通信速率和可靠性,并且 能够实现简单译码的关键技术。该文针对瑞利信道系统模型,提出一种适用于多入单出正交空时分组码(OSTBC) 的调制识别算法。该算法通过对接收到的数据进行重排,将多入单出的系统模型转化为类似多入多出的系统模型, 并且根据信源的特殊性用最大似然的思想实现调制类型的识别。仿真结果验证了所提算法的有效性。 关键词: 无线通信; 调制识别; 多入单出; 正交空时分组码 中图分类号: TN92 文献标识码: A 文章编号: 1009-5896(2015)04-0863-05 DOI: 10.11999/JEIT140644

## Modulation Identification for Orthogonal Space-time Block Code in Multiple Input Single Output Systems

Qian Guo-bing Li Li-ping Guo Heng-yi

(Department of Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China)

**Abstract**: In modern wireless communication systems, multiple-antenna-transmitting in association with Orthogonal Space-Time Block Code (OSTBC) is a key technology to improve communication rate, reliability, and decoding complexity. In this paper, a modulation identification algorithm is proposed which is well suitable for the Multiple Input Single Output (MISO)-OSTBC system. First, the MISO system is transformed into a Multiple Input Multiple Output (MIMO) system by reshaping the received data. Then, maximum likelihood based approach is used to identify the modulation. Simulations validate the effectiveness of the proposed algorithm.

**Key words**: Wireless communication; Modulation identification; Multiple Input Single Output (MISO); Orthogonal Space-Time Block Code (OSTBC)

#### 1 引言

多天线发射技术是现代无线通信中用来提高通 信速率和可靠性的重要技术手段。空时分组码 (Space-Time Block Code, STBC)<sup>[1-3]</sup>是多天线通信 系统的主要编码方式,其中正交空时分组码因为能 够提供满分集和译码简单被广泛使用。通信系统参 数盲估计是一个重要的研究课题,广泛应用于军事 及民用领域<sup>[4-6]</sup>,其中调制类型的盲识别具有重要 的理论和现实意义,已引起国内外学者的关注。

2009 年, Choqueuse 等人<sup>[7]</sup>针对多入多出 (MIMO)系统提出基于独立分量分析(ICA)的最大 似然调制识别算法,该算法可以看作是在该系统下 调制识别算法性能的上界,然而该算法只能适用于 空分复用的情形却不能适用于空时分组码系统。 2012 年, Hassan 等人<sup>[8]</sup>利用调制信号高阶累积量特 征提出基于神经网络的识别算法,该算法能较好地 适用于空间相关的信道模型,然而同样不能适用于 空时分组码系统。同年,Mühlhaus等人<sup>[9]</sup>利用调制 信号高阶累积量特征提出基于欧氏距离最小准则的 识别算法。2013年,文献[10]在文献[9]基础上提出 基于调制信号高阶累积量特征的最大似然识别算 法,该算法计算复杂度远低于文献[7]提出的调制识 别算法,然而同样不能适用于空时分组码系统。Luo 等人<sup>[11,12]</sup>于2012年和2013年分别提出基于特征函 数和多维 ICA 的最大似然调制识别算法,该算法能 够较好地适用于空时分组码系统,然而只能有效地 识别复调制( $\geq 4PSK$ ,  $\geq 4QAM$ ),却不能适用于 PAM 等实调制类型。此外,这些方法都只能适用于 多根接收天线的情形,目前还没有提出适用于多天 线发射单天线接收情形下的调制识别算法。

本文针对正交空时分组码系统,提出一种适用 于单根接收天线情形下的调制识别算法。首先,我 们将接收到的数据进行重排,然后提出基于最大似 然的调制识别算法。考虑到实际情形中信道是未知

<sup>2014-05-14</sup> 收到, 2014-12-26 改回

通信信息控制和安全重点实验室基金(9140C130304120C13064)和 国家自然科学基金(61201282)资助课题

<sup>\*</sup>通信作者: 钱国兵 shuaiguobing@hotmail.com

的,我们先用二阶统计量的方法<sup>[13]</sup>来预估信道,对 于存在剩余模糊的编码,再用 ICA 算法中<sup>[14]</sup>帩度最 大化的思想来去掉部分模糊,然后证明似然函数对 剩余的模糊不敏感,因而可以用估计出来的信道进 行调制识别。最后,仿真实验验证了本文算法的有 效性。

#### 2 系统模型

在正交空时分组码系统中,由星座  $\mathcal{M}$  (假设其 具有 M 个状态)调制后的每 n 个符号被分为一组,记 为  $\mathbf{s}_v = [\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_n]^{\mathrm{T}}$ 。向量  $\mathbf{s}_v$ 被编码为一个  $n_t \times l$  ( $n_t$ 为发射天线个数,l 为分组长度)维的复矩阵<sup>[3]</sup>:

$$C(\boldsymbol{s}_v) = \sum_{k=1}^{n} (\boldsymbol{A}_k \Re(s_k) + \boldsymbol{B}_k \Im(s_k))$$
(1)

且满足:

$$C(\boldsymbol{s}_{v})C^{\mathrm{H}}(\boldsymbol{s}_{v}) = \left\|\boldsymbol{s}_{v}\right\|^{2} \boldsymbol{I}_{n_{t}}$$
(2)

$$\boldsymbol{A}(\boldsymbol{h}) = \begin{bmatrix} \operatorname{vec}\left(\Re\left\{\left(\boldsymbol{h}\boldsymbol{A}_{1}\right)^{\mathrm{T}}\right\}\right) & \cdots & \operatorname{vec}\left(\Re\left\{\left(\boldsymbol{h}\boldsymbol{A}_{n}\right)^{\mathrm{T}}\right\}\right) \\ \operatorname{vec}\left(\Im\left\{\left(\boldsymbol{h}\boldsymbol{A}_{1}\right)^{\mathrm{T}}\right\}\right) & \cdots & \operatorname{vec}\left(\Im\left\{\left(\boldsymbol{h}\boldsymbol{A}_{n}\right)^{\mathrm{T}}\right\}\right) \end{bmatrix}$$

为2l×2n维的虚拟信道矩阵。

$$\underline{s} \triangleq \begin{bmatrix} \Re(s_1) & \cdots & \Re(s_n) & \Im(s_1) & \cdots & \Im(s_n) \end{bmatrix}^{\mathrm{T}}$$
(6)

$$\underline{\boldsymbol{n}} = \begin{bmatrix} \operatorname{vec}\left(\Re\left\{\boldsymbol{n}_{v}^{\mathrm{T}}\right\}\right) \\ \operatorname{vec}\left(\Im\left\{\boldsymbol{n}_{v}^{\mathrm{T}}\right\}\right) \end{bmatrix}$$
(7)

根据上述单个天线下的系统模型表达式,基于 最大似然的调制类型识别可以表达为

$$\widehat{\mathcal{M}} = \arg\max_{\mathcal{M}\in\Theta} \sum_{k=1}^{N_b} \lg \left( \Lambda \left[ \underline{\boldsymbol{y}}(k) \mid \mathcal{M} \right] \right)$$
(8)

其中  $A[\underline{y}(k) \mid M]$  表示以 M 为条件的似然函数,  $\underline{y}(k)$  表示随机向量  $\underline{y}$  的第k 个样本,  $\Theta$  表示由调制 类型组成的集合,  $N_b$  表示接收到的分组数。不失一 般性,可以假设随机向量  $\underline{s}$  的各分量独立并且服从均 匀分布,则其概率密度函数为  $f(\underline{s}(k)) = 1/(M^n)$ , 其中 M 表示调制类型 M 的状态数,又由于  $\underline{n}$  服从 高斯分布,所以:

$$\begin{split} \widehat{\mathcal{M}} &= \arg \max_{\mathcal{M} \in \Theta} \left( -N_b \, \lg(M^n (\pi \sigma^2)^{n_r l}) \right. \\ &+ \sum_{k=1}^{N_b} \lg \left( \sum_{s(k) \in \mathcal{M}^n} \exp\left[ \left\| \underline{\boldsymbol{y}}(k) - \boldsymbol{A}(\boldsymbol{h}) \, \underline{\boldsymbol{s}}(k) \right\|_{\mathrm{F}}^2 \big/ \sigma^2 \right] \right) \end{split}$$

$$(9)$$

其中 $\sigma^2$ 表示噪声平均功率。

在实际场景中,信道信息往往是未知的。这里 先利用正交空时分组码的特性用二阶统计量的方 法<sup>[13]</sup>来预估信道(该方法只能适用于正交空时分组 码是由于其依赖于编码的正交特性和特有的空时冗 其中 $A_k$ 和 $B_k$ 均为 $n_t \times l$ 维的空时编码矩阵,  $\Re(\cdot)$ 和  $\Im(\cdot)$ 分别表示取变量的实部和虚部。

空时分组码经天线发射后在只有单根接收天线 情况下的信道传输模型为<sup>[3]</sup>

$$\boldsymbol{y}_v = \boldsymbol{h} C(\boldsymbol{s}_v) + \boldsymbol{n}_v \tag{3}$$

其中向量 $y_v$ 表示第v个组接收到的信号;向量h为 信道传输向量,在本文中假设其为频率平坦衰落瑞 利信道; $n_v$ 为每个分组上的加性高斯白噪声,其在 时间和空间上不相关;传输符号的功率假设是经过 归一化的,即 $E(|s_v|^2) = 1$ 。这里需要声明的是,归 一化的假设是很常见的,例如在参考文献[7-12]中。

#### 3 基于最大似然的调制分类器

本文将y,的实部和虚部拼接为一个向量,则

$$\underline{\boldsymbol{y}} \triangleq \begin{bmatrix} \operatorname{vec}\left(\Re\left\{\boldsymbol{y}_{v}^{\mathrm{T}}\right\}\right) \\ \operatorname{vec}\left(\Im\left\{\boldsymbol{y}_{v}^{\mathrm{T}}\right\}\right) \end{bmatrix} = \boldsymbol{A}(\boldsymbol{h})\underline{\boldsymbol{s}} + \underline{\boldsymbol{n}}$$
(4)

其中 vec(·) 表示向量化。

$$\begin{array}{l} \operatorname{vec}\left(\Re\left\{\left(\boldsymbol{h}\boldsymbol{B}_{1}\right)^{\mathrm{T}}\right\}\right) & \cdots & \operatorname{vec}\left(\Re\left\{\left(\boldsymbol{h}\boldsymbol{B}_{n}\right)^{\mathrm{T}}\right\}\right) \\ \\ \operatorname{vec}\left(\Im\left\{\left(\boldsymbol{h}\boldsymbol{B}_{1}\right)^{\mathrm{T}}\right\}\right) & \cdots & \operatorname{vec}\left(\Im\left\{\left(\boldsymbol{h}\boldsymbol{B}_{n}\right)^{\mathrm{T}}\right\}\right) \end{array}$$
(5)

余),对于存在剩余模糊的编码,再用帩度最大化的 思想来去掉部分模糊。具体方法如下:

(1)如果  $\boldsymbol{\Phi}^{\mathrm{T}}(\boldsymbol{I}_{2K} \otimes \boldsymbol{R})\boldsymbol{\Phi}$ 的主特征值是 m 重的 (m 取值由具体的正交空时分组码决定<sup>[13]</sup>),那么  $\hat{\boldsymbol{h}} = \boldsymbol{U}\boldsymbol{w}$ ,其中  $4nl \times 2n_t$ 维的矩阵  $\boldsymbol{\Phi}$ 为 $\boldsymbol{h}$ 与 vec{ $\boldsymbol{A}(\boldsymbol{h})$ }之间的过渡矩阵,其第k列构造方式为 vec{ $\boldsymbol{A}(\boldsymbol{e}_k)$ }, $\boldsymbol{e}_k$ 为第k个元素为 1 而其余元素为 0 的  $2n_t$ 维的行向量,  $\boldsymbol{R}$ 为接收数据按式(4)重排后的 自相关矩阵,  $\boldsymbol{U}$ 为主分量特征向量张成的空间,  $\boldsymbol{w} = [w_1 \cdots w_m]^{\mathrm{T}}$ 为待估实向量。此时,<u> $\hat{\boldsymbol{s}} = \boldsymbol{A}^{\mathrm{T}}(\hat{\boldsymbol{h}})\boldsymbol{y}$ </u> / $\|\hat{\boldsymbol{h}}\|_{\mathrm{F}}^2$ ,  $\hat{\boldsymbol{s}} = [\boldsymbol{I}_n \ j\boldsymbol{I}_n] \hat{\boldsymbol{s}}$ 。

(2)通过最大化估计出来的源信号的帩度的绝对 值来求解 ĥ。

由于大多数的数字调制(PAM,PSK,QAM)的帩 度为负值<sup>[15]</sup>,所以最大化估计出来的源信号的帩度 的绝对值等价于最小化估计出来的源信号的帩度。 而ŝ由w决定,所以最小化ŝ帩度就等价于

$$\widehat{\boldsymbol{w}} : \begin{cases} \min_{\boldsymbol{w}} J(\boldsymbol{w}) = \sum_{k=1}^{n} \left\{ E(|\widehat{\boldsymbol{s}}_{k}|^{4}) - 2\left[E(|\widehat{\boldsymbol{s}}_{k}|^{2})\right]^{2} \\ - E(\widehat{\boldsymbol{s}}_{k}^{2})E(\widehat{\boldsymbol{s}}_{k}^{*2}) \right\} \\ \text{s.t.} \quad \boldsymbol{w}\boldsymbol{w}^{\mathrm{H}} = 1 \end{cases}$$
(10)

我们可以采用经典的梯度下降法来优化上面的代价 函数,其中

$$\begin{split} \Gamma_{\boldsymbol{w}} &= \frac{dJ(\boldsymbol{w})}{d\boldsymbol{w}} \\ &= \sum_{p=1}^{m} \sum_{k=1}^{n} \boldsymbol{e}_{p}^{(m)} \left\{ 2E \left[ \left| \hat{\boldsymbol{s}}_{k}^{(v)} \right|^{2} \left( \hat{\boldsymbol{s}}_{k}^{(v)} \boldsymbol{q}_{pk}^{(2)} + \hat{\boldsymbol{s}}_{k}^{(v)*} \boldsymbol{q}_{pk}^{(1)} \right) \underline{\boldsymbol{y}} \right] \\ &- 4E \left( \left| \hat{\boldsymbol{s}}_{k}^{(v)} \right|^{2} \right) E \left[ \left( \hat{\boldsymbol{s}}_{k}^{(v)} \boldsymbol{q}_{pk}^{(2)} + \hat{\boldsymbol{s}}_{k}^{(v)*} \boldsymbol{q}_{pk}^{(1)} \right) \underline{\boldsymbol{y}} \right] \\ &- 2 \left[ E(\hat{\boldsymbol{s}}_{k}^{(v)2}) E \left( \hat{\boldsymbol{s}}_{k}^{(v)*} \boldsymbol{q}_{pk}^{(2)} \underline{\boldsymbol{y}} \right) + E(\hat{\boldsymbol{s}}_{k}^{(v)*2}) E \left( \hat{\boldsymbol{s}}_{k}^{(v)} \boldsymbol{q}_{pk}^{(1)} \underline{\boldsymbol{y}} \right) \right] \end{split}$$
(11

其中  $\boldsymbol{q}_{pk}^{(1)} = [e_k^{(n)} je_k^{(n)}] \boldsymbol{A}^{\mathrm{T}}(\boldsymbol{U}\boldsymbol{e}_p^{(m)}), \boldsymbol{q}_{pk}^{(2)} = [e_k^{(n)} - je_k^{(n)}]$ · $\boldsymbol{A}^{\mathrm{T}}(\boldsymbol{U}\boldsymbol{e}_p^{(m)}), \boldsymbol{e}_p^{(m)}$ 为第 p 个元素为 1 而其余元素为 0 的 m 维列向量。在计算梯度的时候我们忽略了  $1/\|\hat{\boldsymbol{h}}\|_{\mathrm{F}}^2$ 是因为考虑到信源功率归一化的假设。这样, 用估计出来的信道 $\hat{\boldsymbol{h}} = \boldsymbol{U}\boldsymbol{w}$ 来解码得到源信号的估 计为

$$\hat{\boldsymbol{s}} = \begin{bmatrix} \boldsymbol{I}_n & j\boldsymbol{I}_n \end{bmatrix} \boldsymbol{A}^{\mathrm{T}} (\hat{\boldsymbol{h}}) \boldsymbol{\underline{y}}$$
 (12)

在无噪声情况下,估计出来的源信号和真实的源信 号有一个置换,幅度,相位的模糊,即

$$\widehat{\boldsymbol{s}} = \alpha \boldsymbol{D} \boldsymbol{P} \boldsymbol{s} \tag{13}$$

其中 D 为对角矩阵,其对角线上元素分别为  $e^{i\theta_1}, e^{i\theta_2}, \dots, e^{i\theta_n}, P$  为交换矩阵。

(3)幅度和相位的部分校正:由于传输符号的功率 是经过归一化的,即  $E(|s|^2) = 1$ ,所以  $\alpha = \sqrt{E(|\hat{s}|^2)}$ 。如果不是归一化的符号,则  $\alpha = \sqrt{E(|\hat{s}|^2) / E(|s|^2)}$ 。可以利用文献[7,11,12,16]中的算法部分消除式(13)中每个分量的相位旋转模糊  $\theta_i (i = 1, 2, ..., n)$ ,估计算法为

$$\hat{\theta}_i = \frac{1}{q} \phi \left( E\left( \left( s_i^* \right)^q \right) \sum_{k=0}^{N-4} \left( \hat{s}_i(k) \right)^q \right)$$
(14)

其中 $\phi(\cdot)$ 表示取一个复数的相位角,系数q与调制类型有关,对于 PAM 调制,星座的旋转对称角度为 $\pi$ , 所以q = 2;对于 M-PSK 调制,q = M;对于正方 形或矩形 M-QAM 调制,q = 4。定义: $\hat{D}$ 为对角 矩阵,其对角线上元素分别为 $e^{i\theta_1},e^{i\theta_2},\dots,e^{i\theta_n}$ ; $\hat{D}_q$ 为 对角矩阵,其对角线上元素分别为 $e^{i2\pi\rho_2/q},\dots,e^{i2\pi\rho_n/q}$ ,  $g^{i2\pi\rho_2/q},\dots,e^{i2\pi\rho_n/q}$ ,则 $D = \hat{D}\hat{D}_q$ ,其中 $\hat{D}_q$ 为剩余的 相位模糊, $\rho_1,\rho_2,\dots,\rho_n$ 均为整数,取值范围为  $-(M-1) \sim (M-1), M$ 为调制类型M的状态数。

接下来,我们来证明似然函数对剩余的相位模 糊并不敏感。

由式(13)可得

$$\begin{split} & [\boldsymbol{I}_{n} \ \boldsymbol{j} \boldsymbol{I}_{n}] \boldsymbol{A}^{\mathrm{T}} \left( \boldsymbol{\hat{h}} \right) \boldsymbol{\underline{y}} \\ &= \alpha \boldsymbol{D} \boldsymbol{P} [\boldsymbol{I}_{n} \ \boldsymbol{j} \boldsymbol{I}_{n}] \boldsymbol{A}^{\mathrm{T}} (\boldsymbol{h}) \boldsymbol{\underline{y}} \\ &= & [\boldsymbol{I}_{n} \boldsymbol{j} \boldsymbol{I}_{n}] \begin{bmatrix} \alpha \, \Re \left( \boldsymbol{\widehat{D}} \boldsymbol{\widehat{D}}_{q} \right) \boldsymbol{P} - \alpha \, \Im \left( \boldsymbol{\widehat{D}} \boldsymbol{\widehat{D}}_{q} \right) \boldsymbol{P} \\ & \alpha \, \Im \left( \boldsymbol{\widehat{D}} \boldsymbol{\widehat{D}}_{q} \right) \boldsymbol{P} \, \alpha \, \Re \left( \boldsymbol{\widehat{D}} \boldsymbol{\widehat{D}}_{q} \right) \boldsymbol{P} \end{bmatrix} \boldsymbol{A}^{\mathrm{T}} (\boldsymbol{h}) \boldsymbol{\underline{y}} \left( 15 \right) \end{split}$$

所以

$$\boldsymbol{A}(\boldsymbol{h}) = \boldsymbol{A}\left(\hat{\boldsymbol{h}}\right) \begin{bmatrix} \alpha \left\{ \Re\left(\widehat{\boldsymbol{D}}\widehat{\boldsymbol{D}}_{q}\right)\boldsymbol{P} \right\}^{\mathrm{T}} & \alpha \left\{ \Im\left(\widehat{\boldsymbol{D}}\widehat{\boldsymbol{D}}_{q}\right)\boldsymbol{P} \right\}^{\mathrm{T}} \\ -\alpha \left\{ \Im\left(\widehat{\boldsymbol{D}}\widehat{\boldsymbol{D}}_{q}\right)\boldsymbol{P} \right\}^{\mathrm{T}} & \alpha \left\{ \Re\left(\widehat{\boldsymbol{D}}\widehat{\boldsymbol{D}}_{q}\right)\boldsymbol{P} \right\}^{\mathrm{T}} \end{bmatrix}^{-1} \end{cases}$$
(16)

此时的似然函数可以写成:

$$\widehat{\mathcal{M}} = \arg \max_{\mathcal{M} \in \mathcal{O}} \left\{ -N_b \lg (M^n (\pi \sigma^2)^{n_r l} + \sum_{k=1}^{N_b} \lg \left( \sum_{\boldsymbol{s}(k) \in \mathcal{M}^n} \exp \left[ \left\| \underline{\boldsymbol{y}}(k) - \boldsymbol{A}(\hat{\boldsymbol{h}}) \overline{\boldsymbol{D}} \underline{\boldsymbol{s}}(k) \right\|_{\mathrm{F}}^2 / \sigma^2 \right] \right) \right\}$$
(17)

又由于
$$s(k) \in \mathcal{M}^{n}$$
时,  $\sum_{s(k)} \exp\left[\left\|\underline{y}(k) - A(\hat{h})\overline{D}\underline{s}(k)\right\|_{F}^{2} / \sigma^{2}\right]$   
=  $\sum_{s(k)} \exp\left[\left\|\underline{y}(k) - A(\hat{h})\overline{D}_{1}\underline{s}(k)\right\|_{F}^{2} / \sigma^{2}\right]$ , 因此似然函数

可以进一步化简为

$$\widehat{\mathcal{M}} = \arg \max_{\mathcal{M} \in \Theta} \left\{ -N_b \lg (M^n (\pi \sigma^2)^{n_r l} + \sum_{k=1}^{N_b} \lg \left( \sum_{\boldsymbol{s}(k) \in \mathcal{M}^n} \exp \left[ \left\| \underline{\boldsymbol{y}}(k) - \boldsymbol{A} \left( \hat{\boldsymbol{h}} \right) \overline{\boldsymbol{D}}_1 \underline{\boldsymbol{s}}(k) \right\|_{\mathrm{F}}^2 / \sigma^2 \right] \right) \right\}$$
(18)

$$\frac{1}{\alpha} \begin{bmatrix} \left\{ \Re \left( \widehat{\boldsymbol{D}} \widehat{\boldsymbol{D}}_{q} \right) \boldsymbol{P} \right\}^{\mathrm{T}} & \left\{ \Im \left( \widehat{\boldsymbol{D}} \widehat{\boldsymbol{D}}_{q} \right) \boldsymbol{P} \right\}^{\mathrm{T}} \\ - \left\{ \Im \left( \widehat{\boldsymbol{D}} \widehat{\boldsymbol{D}}_{q} \right) \boldsymbol{P} \right\}^{\mathrm{T}} & \left\{ \Re \left( \widehat{\boldsymbol{D}} \widehat{\boldsymbol{D}}_{q} \right) \boldsymbol{P} \right\}^{\mathrm{T}} \end{bmatrix}^{-1} \end{bmatrix}$$

和

$$\frac{1}{\alpha} \begin{bmatrix} \Re\left(\widehat{\boldsymbol{D}}\right) & \Im\left(\widehat{\boldsymbol{D}}\right) \end{bmatrix}^{-1} \\ -\Im\left(\widehat{\boldsymbol{D}}\right) & \Re\left(\widehat{\boldsymbol{D}}\right) \end{bmatrix}^{-1}$$

从以上证明过程中可以看出,似然函数对剩余 的相位模糊并不敏感。

#### 4 仿真

本文采用平均正确识别概率为指标来衡量算法 性能,集合 $\Theta$ 由 BPSK, 4PSK, 16PSK 和 16QAM 4 种调制组成,所有仿真是在以下条件下进行: (1)瑞 利信道; (2)噪声在空间和时间上不相关,方差为 $\sigma^2$ ; (3)单根天线接收,且接收到的空时分组码的组数 $N_b$ 为 512; (4)信噪比定义为<sup>[1,7]</sup>: SNR = 10lg( $P / \sigma^2$ ), 其中 P 为发射端天线总功率。在每个信噪比下进行 500 次蒙特卡洛仿真实验。

在仿真实验 1 和仿真实验 2 中分别采用 Alamouti 编码和 3/4 码率的正交空时分组码<sup>(3)</sup>,此 外,为了避免梯度下降法收敛到局部极值,在估计 信道时对 w 赋多个初值,最终收敛时使代价函数最 小的 w 值即认为是使代价函数收敛到全局极值的 w。

# 仿真实验 1 多入单出系统采用 Alamouti 编码 时的正确识别概率

图 1 是多入单出(MISO)系统采用 Alamouti 编 码时本文所提出的调制识别算法的性能曲线。图 1(a) 是发射端符号采用 BPSK 调制时的识别概率,从中 可以看出,当信噪比大于或等于1dB时正确识别的 概率能达到100%,而在低信噪比下,可能会将调制 类型误识别为 QPSK 或者 16QAM;图 1(b)是发射 端符号采用 QPSK 调制时的识别概率,从中可以看 出当信噪比大于或等于7dB时,正确识别的概率能 达到100%,而在低信噪比下,容易将调制类型误识 别为 16QAM; 图 1(c)是发射端符号采用 16PSK 调 制时的识别概率,从中可以看出当信噪比大于或等 于7 dB时,正确识别的概率能达到100%,而在低 信噪比下,容易将调制类型误识别为 QPSK 或者 16QAM;图 1(d)是发射端符号采用 16QAM 调制时 的识别概率,从中可以看出当信噪比大于或等于 7 dB 时,正确识别的概率能达到 100%,而在低信噪 比下,容易将调制类型误识别为 QPSK。

仿真实验 2 多入单出系统采用 3/4 码率的正 交空时分组码的正确识别概率

图 2 是多入单出系统采用 3/4 码率的正交空时

分组码时本文所提出的调制识别算法的性能曲线。 图 2(a)是发射端符号采用 BPSK 调制时的识别概 率,从中可以看出当信噪比大于或等于1dB时,正 确识别的概率能达到100%,而在低信噪比下,容易 将调制类型误识别为 QPSK; 图 2(b)是发射端符号 采用 QPSK 调制时的识别概率,从中可以看出当信 噪比大于或等于 5 dB 时,正确识别的概率能达到 100%,而在低信噪比下,容易将调制类型误识别为 16QAM; 图 2(c)是发射端符号采用 16PSK 调制时 的识别概率,从中可以看出当信噪比大于或等于 5 dB 时,正确识别的概率能达到 100%,而在低信噪 比下,容易将调制类型误识别为 OPSK 或者 16QAM;图 2(d)是发射端符号采用 16QAM 调制时 的识别概率,从中可以看出当信噪比大于或等于 3 dB 时,正确识别的概率能达到 100%,而在低信噪 比下,容易将调制类型误识别为 QPSK。对比图 1 可以看出,本文所提出的调制识别算法在系统采用 3/4 码率的正交空时分组码时性能要优于采用 Alamouti 编码时的性能。

#### 5 结束语

本文提出一种适用于多入单出正交空时分组码 系统的调制识别算法。首先,利用正交空时分组码 在时间和空间上的特殊冗余性,将多入单出系统模 型转换为多入多出的系统模型。然后在该模型上利 用等效信源的特殊性,提出了基于最大似然的调制 识别算法。仿真结果验证了本文算法的有效性。



图 1 多入单出系统采用 Alamouti 编码时各种调制类型的正确识别概率



图 2 多入单出系统采用 3/4 码率的正交空时分组码时各种调制类型的正确识别概率

#### 参考文献

- Vucetic B and Yuan J. Space-time Coding[M]. New York: John Wiley & Sons, 2003, Chapters, 3–5.
- Jafarkhani H. Space-time Coding: Theory and Practice[M]. New York: Cambridge University Press, 2005: 45–53.
- [3] Larsson E G and Stoica P. Space-time Block Coding for Wireless Communications[M]. New York: Cambridge University Press, 2008: 79–95.
- [4] 付卫红,杨小牛,刘乃安.基于四阶累积量的稳健的通信信号 盲分离算法[J].电子与信息学报,2008,30(8):1853-1856.
   Fu Wei-hong, Yang Xiao-niu, and Liu Nai-an. Robust algorithm for communication signal blind separation fourthorder-cumulant-based[J]. Journal of Electronics & Information Technology, 2008, 30(8):1853-1856.
- [5] 李进, 冯大政, 房嘉奇. MIMO 通信系统中 QAM 信号的快速半盲均衡算法研究[J]. 电子与信息学报, 2013, 35(1): 185-190.
   Li Jin, Feng Da-zheng, and Fang Jia-qi. Study of fast

Li Jin, Feng Da-Zheng, and Fang Jia-qi. Study of fast semi-blind equalization algorithm for MIMO systems with QAM signal[J]. *Journal of Electronics & Information Technology*, 2013, 35(1): 185–190.

- [6] Qian G, Li L, Luo M, et al.. Blind recognition of space-time block code in MISO system[J]. EURASIP Journal on Wireless Communications and Networking, 2013, 164(1): 1–12.
- [7] Choqueuse V, Azou S, Yao K, et al.. Blind modulation recognition for MIMO systems[J]. MTA Review, 2009, 19(2): 183–196.
- [8] Hassan K, Dayoub I, Hamouda W, et al. Blind digital modulation identification for spatially-correlated MIMO systems[J]. *IEEE Transactions on Wireless Communications*, 2012, 11(2): 683–693.
- [9] Mühlhaus M S, Öner M, Dobre O A, et al. Automatic modulation classification for MIMO systems using

fourth-order cumulants[C]. Vehicular Technology Conference (VTC Fall), Quebec City, 2012: 1–5.

- [10] Muhlhaus M, Oner M, Dobre O, et al. A low complexity modulation classification algorithm for MIMO systems[J]. *IEEE Communications Letters*, 2013, 17(10): 1881–1884.
- [11] Luo M, Li L, and Tang B. A blind modulation recognition algorithm suitable for MIMO-STBC systems[C]. International Conference on Communications and Information Technology (ICCIT), Chengdu, 2012: 271–276.
- [12] Luo M, Li L, Qian G, et al. A blind modulation identification algorithm for STBC systems using multidimensional ICA [J]. *Concurrency and Computation: Practice and Experience*, 2013, 26(8): 1490–1505.
- [13] Shahbazpanahi S, Gershman A B, and Manton J H. Closed-form blind MIMO channel estimation for orthogonal space-time block codes[J]. *IEEE Transactions on Signal Processing*, 2005, 53(12): 4506–4517.
- [14] Comon P and Jutten C. Handbook of Blind Source Separation: Independent Component Analysis and Applications[M]. Oxford: Academic Press, 2011: 179–226.
- [15] Swami A and Sadler B M. Hierarchical digital modulation classification using cumulants[J]. *IEEE Transactions on Communications*, 2000, 48(3): 416–429.
- [16] Moeneclaey M and De Jonghe G. ML-oriented NDA carrier synchronization for general rotationally symmetric signal constellations[J]. *IEEE Transactions on Communications*, 1994, 42(8): 2531–2533.
- 钱国兵: 男,1986年生,博士生,研究方向为盲源分离、通信信 号处理.
- 李立萍: 女,1963年生,教授,博士生导师,主要研究方向为非 合作信号处理、高速信号处理、微弱信号检测与参数估 计等.
- 郭亨艺: 女, 1989年生, 硕士生, 研究方向为通信信号处理.